Skip to main content
Log in

Volumetric and transport properties of N-Butyl-N-methylpyrrolidinium bis(Trifluoromethanesulfonyl)imide–methanol binary mixtures

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Densities, viscosities, and ionic conductivities were measured for the binary mixtures containing the ionic liquid N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide and methanol over the entire range of compositions at the temperature varying from 253.15 to 318.15 K. The densities and viscosities decrease monotonously with temperature and the content of ionic liquids (ILs). Furthermore, excess isobaric expansion coefficient has been calculated from the experimental densities. The dependence of temperature on the viscosity has been fitted to the Arrhenius law with high precision. The dependence of temperature on the ionic conductivity has also been gauged by both of the Arrhenius and Vogel–Tamman–Fulcher (VTF) equations. In fact, the shape of the curves shows that the temperature dependence of the conductivity does not follow a simple Arrhenius law, but a better fitting of experimental results is achieved using the VTF model. Additionally, the effects of ILs concentration on the viscosity and the conductivity have been examined using the Walden rule, which shows that the variation of conductivity is inversely proportional to viscosity. Excess molar volumes and viscosity deviations for all mixtures are evaluated and well fitted to the Redlich–Kister polynomial expansions. Physicochemical properties show two clearly distinguished behaviors corresponding to ILs-rich and methanol-rich regions, with distinct transport and volumetric properties. The obtained results are discussed in terms of dipolar interactions and hydrogen bonding establishment between ions of ILs and the methanol molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Plechkova NV, Seddon KR (2008) Chem Soc Rev 37:123

    Article  CAS  Google Scholar 

  2. Greaves TL, Drummond CJ (2008) Chem Rev 108:206

    Article  CAS  Google Scholar 

  3. Zhang S, Lu X, Zhou Q, Li X, Zhang X, Li S (2009) Ionic Liquids: physicochemical properties. Elsevier, Amsterdam

    Google Scholar 

  4. Salminen J, Papaiconomou N, Kumar RA, Lee JM, Kerr J, Newman J, Prausnitz J (2007) Fluid Phase Equilib 261:421

    Article  CAS  Google Scholar 

  5. Welton T (1999) Chem Rev 99:2071

    Article  CAS  Google Scholar 

  6. Kubisa P (2004) Prog Polym Sci 29:3

    Article  CAS  Google Scholar 

  7. Nishida T, Tashiro Y, Yamamoto M (2003) J Fluorine Chem 120:135

    Article  CAS  Google Scholar 

  8. Alan BM, Stephen FM, Victor RK (1997) J Electrochem Soc 144:84

    Article  Google Scholar 

  9. Wasserscheid P, Welton T (2003) Ionic Liquids in Synthesis. Wiley-VCH, Weinheim

    Google Scholar 

  10. Annat G, MacFarlane DR, Forsyth M (2007) J Phys Chem B 111:9018

    Article  CAS  Google Scholar 

  11. Hofman T, Goldon A, Nevines A, Letcher TM (2008) J Chem Thermodyn 40:580

    Article  CAS  Google Scholar 

  12. Rogers RD, Seddon KR (2003) Ionic Liquids as Green Solvents: Progress and Prospects. ACS Symposium,Washington

  13. Van Valkenburg ME, Vaughn RL, Williams M, Wilkes JS (2005) Thermochim Acta 425:181

    Article  Google Scholar 

  14. Abdulagatov IM, Tekin A, Safarov J, Shahverdiyev A, Hassel E (2008) J Chem Thermodyn 40:1386

    Article  CAS  Google Scholar 

  15. Abareshi M, Goharshadi EK, Zebarjad S Mo (2009) J Mol Liq 149:66

    Article  CAS  Google Scholar 

  16. Domanska U, Laskowska M (2009) J Solution Chem 38:779

    Article  CAS  Google Scholar 

  17. Rilo E, Vila J, Garcia M, Varela LM, Cabeza O (2010) J Chem Eng Data 55:5156

    Article  CAS  Google Scholar 

  18. Jin H, O'Hare B, Dong J, Arzhantsev S, Baker GA, Wishart JF, Benesi A, Maroncelli M (2008) J Phys Chem B 112:81

    Article  CAS  Google Scholar 

  19. Geng Y, Wang T, Yu D, Peng Ch, Liu H, Hu Y (2008) Chin J Chem Eng 16:256

    Article  CAS  Google Scholar 

  20. Kiyohara O, d'Arcy PJ, Benson GC (1978) Can J Chem 56:2803

    Article  CAS  Google Scholar 

  21. Benson GC, Kiyohara O (1979) J Chem Thermodyn 11:1061

    Article  CAS  Google Scholar 

  22. Tamura K, Nakamura M, Murakami S (1997) J Solution Chem 26:1199

    Article  CAS  Google Scholar 

  23. Koel M (2008) Ionic Liquids in Chemical Analysis. CRC Press, Boca Raton

    Book  Google Scholar 

  24. Matsumoto H, Yanagida M, Tanimoto K, Nomura M, Kitagawa Y, Miyazaki Y (2000) Chem Lett 29:922

    Article  Google Scholar 

  25. Cammarata L, Kazarian SG, Salter PA, Welton T (2001) J Phys Chem Chem Phys 3:5192

    CAS  Google Scholar 

  26. Olivier-Bourbigou H, Magna L (2002) J Mol Catal A 182:183

    Google Scholar 

  27. Pitner W (2008) Ionic liquids. Properties and applications. Merck KGaA, Darmstadt, Germany http://www.merck.de/servlet/PB/menu. Accessed June 2008.

  28. Billard I, Moutiers G, Labet A, El Azzi A, Gaillard G, Mariet C, Lutzenkirchen S (2003) Inorg Chem 42:1726

    Article  CAS  Google Scholar 

  29. Seddon KR, Stark A, Torres M-J (2000) Pure Appl Chem 72:2275

    Article  CAS  Google Scholar 

  30. Wang JJ, Zhu AL, Zhao Y (2005) J Solution Chem 34:585

    Article  CAS  Google Scholar 

  31. Zafarani-Moattar MT, Shekarri H (2005) J Chem Thermodyn 37:1029

    Article  CAS  Google Scholar 

  32. Huang JF, Chen PY, Sun IW, Wang SP (2001) Inorg Chim Acta 320:7

    Article  CAS  Google Scholar 

  33. Powell RE, Roseveare WE, Eyring H (1941) Ind Eng Chem 33:430

    Article  CAS  Google Scholar 

  34. Kincaid F, Eyring H, Stearn AE (1941) Chem Rev 28:301

    Article  CAS  Google Scholar 

  35. Andrzejewska E, Podgorska-Golubska M, Stepniak I, Andrzejewski M (2009) Polymer 50:2040

    Article  CAS  Google Scholar 

  36. Gu GY, Bouvier S, Wu C, Laura R, Rzeznik M, Abraham KM (2000) Electrochim Acta 45:3127

    Article  CAS  Google Scholar 

  37. Yoshizawa M, Hirao M, Ito-Akita K, Ohno H (2001) J Mater Chem 11:1057

    Article  CAS  Google Scholar 

  38. Taggougui M, Diaw M, Carré B, Willmann P, Lemordant D (2008) Electrochim Acta 53:5496

    Article  CAS  Google Scholar 

  39. Perry RL, Jones KM, Scott WD, Liao Q, Hussey CL (1995) J Chem Eng Data 40:615

    Article  CAS  Google Scholar 

  40. Bockris JOM, Reddy AKN (1998) Modern Electrochemistry. Plenum Press, New York

    Google Scholar 

  41. Walden P (1906) Z Phys Chem 55:207

    CAS  Google Scholar 

  42. Heintz A, Klasen D, Lehmann JK (2002) J Solution Chem 31:467

    Article  CAS  Google Scholar 

  43. Redlich O, Kister AT (1948) Ind Eng Chem 40:345

    Article  Google Scholar 

  44. Sibiya PN, Deenadayalu N (2008) J Chem Thermodyn 40:1041

    Article  CAS  Google Scholar 

  45. García-Miaja G, Troncoso J, Romaní L (2008) Fluid Phase Equilib 274:59

    Article  Google Scholar 

  46. Chagnes A, Tougui A, Carré B, Ranganathan N, Lemordant D (2004) J Solution Chem 33:245

    Article  Google Scholar 

Download references

Acknowledgments

Authors are thankful to Dr. N. Raouafi for his helpful discussion during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramzi Zarrougui.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 121 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zarrougui, R., Dhahbi, M. & Lemordant, D. Volumetric and transport properties of N-Butyl-N-methylpyrrolidinium bis(Trifluoromethanesulfonyl)imide–methanol binary mixtures. Ionics 17, 343–352 (2011). https://doi.org/10.1007/s11581-010-0511-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-010-0511-5

Keywords

Navigation