Skip to main content

Advertisement

Log in

U1 snRNA over-expression affects neural oscillations and short-term memory deficits in mice

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

Small nuclear RNAs (snRNAs) and other RNA spliceosomal components are involved in neurological and psychiatric disorders. U1 snRNA has recently been demonstrated to be altered in pathology in some neurodegenerative diseases, but whether it has a causative role is not clear. Here we have studied this by overexpressing U1 snRNA in mice and measured their hippocampal oscillatory patterns and brain functions. Novel object recognition test showed that the recognition index was significantly decreased in the U1 snRNA over-expression mice compared to that in the C57BL mice. U1 snRNA over-expression regulated not only the pattern of neural oscillations but also the expression of neuron excitatory and inhibitory proteins. Here we show that U1 snRNA over-expression contains the shrinkage distribution of theta-power, theta-phase lock synchronization, and theta and low-gamma cross-frequency coupling in the hippocampus. The alternations of neuron receptors by the U1 snRNA overexpression also modulated the decreasing of recognition index, the energy distribution of theta power spectrum with the reductions of theta phase synchronization and phase-amplitude coupling between theta and low-gamma. Linking these all together, our results suggest that U1 snRNA overexpression particularly causes a deficit in short-term memory. These findings make a bedrock of our research that U1 snRNA bridges the gap about the mechanism behind short-term memory based on the molecular and mesoscopic level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arnaud D, Scott M (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134:9–21

    Article  Google Scholar 

  • Bai B (2018) U1 snRNP alteration and neuronal cell cycle reentry in alzheimer disease. Front Aging Neurosci 10:75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartos M, Vida I, Jonas P (2007) Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat Rev Neurosci 8:45

    Article  CAS  PubMed  Google Scholar 

  • Bikbaev A, Manahan-Vaughan D (2008) Relationship of hippocampal theta and gamma oscillations to potentiation of synaptic transmission. Front Neurosci 2:56–63

    Article  PubMed  PubMed Central  Google Scholar 

  • Bing B (2013) U1 small nuclear ribonucleoprotein complex and RNA splicing alterations in Alzheimer’s disease. PNAS 110:41

    Article  Google Scholar 

  • Bing B (2014) Integrated Approaches for Analyzing U1-70K Cleavage in Alzheimer’s disease. J Proteome Res 13:4526–4534

    Article  CAS  Google Scholar 

  • Bokil H, Andrews P, Kulkarni JE, Mehta S, Mitra P (2010) Chronux: a platform for analyzing neural signals. J Neurosci Methods 192:146–151

    Article  PubMed  PubMed Central  Google Scholar 

  • Brzustowicz LM, Lehner T, Castilla LH, Penchaszadeh GK et al (1990) Genetic mapping of chronic childhood-onset spinal muscular atrophy to chromosome 5q11.2–13.3. Nature 344(6266):5401

    Article  Google Scholar 

  • Buzsáki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science 304(5679):1926–1929

    Article  CAS  PubMed  Google Scholar 

  • Canolty RT, Knight RT (2010) The functional role of cross-frequency coupling. Trends Cogn Sci 11:506–515

    Article  Google Scholar 

  • Canolty RT et al (2006) High gamma power is phase-locked to theta oscillations in human neocortex. Science 313:1626–1628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng N, Li Q, Xu X, Zhang T (2016) A precise annotation of phase-amplitude coupling intensity. PLoS ONE 11:e0163940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng Z, Du Z, Shang Y, Zhang Y, Zhang T (2017a) A preliminary study: PS1 increases U1 snRNA expression associated with AD. J Mol Neurosci 62(3–4):269–275

    Article  CAS  PubMed  Google Scholar 

  • Cheng Z, Shang Y, Gao S, Zhang T (2017b) Overexpression of U1 snRNA induces decrease of U1 spliceosome function associated with Alzheimer’s disease. J Neurogenet 31:337–343

    Article  CAS  PubMed  Google Scholar 

  • Cheng Z et al (2017c) Gene expression profiling reveals U1 snRNA regulates cancer gene expression. Oncotarget 8:112867–112874

    PubMed  PubMed Central  Google Scholar 

  • Cheng Z et al (2018) U1 small nuclear RNA overexpression implicates autophagic-lysosomal system associated with AD. Neurosci Res 136:48–55

    Article  CAS  PubMed  Google Scholar 

  • Clarke JR, Cammarota M, Gruart A, Izquierdo I, Delgado-Garcia JM (2010) Plastic modifications induced by object recognition memory processing. Proc Natl Acad Sci 107:2652–2657

    Article  PubMed  PubMed Central  Google Scholar 

  • Clouter A, Shapiro KL, Hanslmayr S (2017) Theta phase synchronization is the glue that binds human associative memory. Curr Biol 27(3143–3148):e3146

    Google Scholar 

  • Cooper TA, Wan L, Dreyfuss G (2009) RNA and disease. Cell 136:777–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delorme A et al (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134:9–21

    Article  PubMed  Google Scholar 

  • Franklin KBJ, Paxinos G (2001) The mouse brain in stereotaxic coordinates. Second edition. Psychoneuroendocrinology 28:827–828

    Google Scholar 

  • Fries P (2001) Modulation of oscillatory neuronal synchronization by selective visual attention. Science 291:1560–1563

    Article  CAS  PubMed  Google Scholar 

  • Fukuda T, Kosaka T, Singer W, Galuske RA (2006) Gap junctions among dendrites of cortical GABAergic neurons establish a dense and widespread intercolumnar network. J Neurosci 26:3434–3443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao J, Zhang X, Yu M, Ren G, Yang Z (2015) Cognitive deficits induced by multiwalled carbon nanotubes via the autophagic pathway. Toxicology 337:21

    Article  CAS  PubMed  Google Scholar 

  • Gibbs ME, Johnston GA (2005) Opposing roles for GABAA and GABAC receptors in short-term memory formation in young chicks. Neuroscience 131:567–576

    Article  CAS  PubMed  Google Scholar 

  • Glaus E, Schmid F, Da Costa R (2011) Gene therapeutic approach using mutation-adapted U1 snRNA to Correct a RPGR splice defect in patient-derived cells. Mol Ther 5:936–941

    Article  CAS  Google Scholar 

  • Gonzalez-Burgos G, Lewis DA (2008) GABA neurons and the mechanisms of network oscillations: implications for understanding cortical dysfunction in schizophrenia. Schizophr Bull 34:944–961

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanslmayr S, Staresina BP, Bowman H (2016) Oscillations and episodic memory: addressing the synchronization/desynchronization conundrum. Trends Neurosci 39:16–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasselmo ME (2002) A proposed function for hippocampal theta rhythm: separate phases of encoding and retrieval enhance reversal of prior learning. Neural Comput 14:793–817

    Article  PubMed  Google Scholar 

  • Hasselmo ME (2005) What is the function of hippocampal theta rhythm?—linking behavioral data to phasic properties of field potential and unit recording data. Hippocampus 15:936–949

    Article  PubMed  Google Scholar 

  • Holz EM, Glennon M, Prendergast K, Sauseng P (2010) Theta–gamma phase synchronization during memory matching in visual working memory. NeuroImage 52:326–335

    Article  PubMed  Google Scholar 

  • Jia Y, Mu JC, Ackerman SL (2012) Mutation of a U2 snRNA gene causes global disruption of alternative splicing and neurodegeneration. Cell 148:296–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HJ, Kim NC, Moore J et al (2013) Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature 495:467–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kline AE, Jacobs SA, Tsien JZ (2012) Genetic overexpression of NR2B subunit enhances social recognition memory for different strains and species. PLoS ONE 7:e36387

    Article  CAS  Google Scholar 

  • Lazarewicz MT, Ehrlichman RS, Maxwell CR, Gandal MJ, Finkel LH, Siegel SJ (2009) Ketamine modulates theta and gamma oscillations. J Cogn Neurosci 22:1452–1464

    Article  Google Scholar 

  • Lefebvre S, Bürglen L, Reboullet S, Clermont O, Burlet P, Viollet L, Benichou B, Cruaud C, Millasseau P, Zeviani M et al (1995) Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80:155–165

    Article  CAS  PubMed  Google Scholar 

  • Leung LS, Shen B (2007) GABAB receptor blockade enhances theta and gamma rhythms in the hippocampus of behaving rats. Hippocampus 17:281–291

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Zheng CG, Cheng N, Wang YY, Yin T, Zhang T (2016) Two generalized algorithms measuring phase–amplitude cross-frequency coupling in neuronal oscillations network. Cogn Neurodyn 10:235–243

    Article  PubMed  PubMed Central  Google Scholar 

  • Licatalosi DD, Darnell RB (2006) Splicing regulation in neurologic disease. Neuron 52:93–101

    Article  CAS  PubMed  Google Scholar 

  • McClean PL, Parthsarathy V, Faivre E, Holscher C (2011) The diabetes drug liraglutide prevents degenerative processes in a mouse model of Alzheimer’s disease. J Neurosci 31:6587–6594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McQuail JA, Beas BS, Kelly KB, Simpson KL, Frazier CJ, Setlow B, Bizon JL (2016) NR2A-containing NMDARs in the prefrontal cortex are required for working memory and associated with age-related cognitive decline. J Neurosci 36:12537–12548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mercer TR, Mattick JS (2013) Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol 20:300–307

    Article  CAS  PubMed  Google Scholar 

  • Neumann M, Sampathu DM, Kwong LK et al (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314:130

    Article  CAS  PubMed  Google Scholar 

  • O’Keefe J, Burgess N (1999) Theta activity, virtual navigation and the human hippocampus. Trends Cogn Sci 3:403–406

    Article  PubMed  Google Scholar 

  • Pagliardini S, Gosgnach S, Dickson CT (2013) Spontaneous sleep-like brain state alternations and breathing characteristics in urethane anesthetized mice. PLoS ONE 8:e70411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pálvölgyi A et al (2018) Loop F of the GABAA receptor alpha subunit governs GABA potency. Neuropharmacology 128:408–415

    Article  CAS  PubMed  Google Scholar 

  • Parish G, Hanslmayr S, Bowman H (2018) The Sync/deSync model: how a synchronized hippocampus and a desynchronized neocortex code memories. J Neurosci 38:3428–3440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenblum MG, Pikovsky AS, Kurths J (1996) Phase synchronization of chaotic oscillators. Phys Rev Lett 76:1804–1807

    Article  CAS  PubMed  Google Scholar 

  • Shang X, Xu B, Li Q et al (2017) Neural oscillations as a bridge between glutamatergic system and emotional behaviors in simulated microgravity-induced mice. Behav Brain Res 317:286–291

    Article  CAS  PubMed  Google Scholar 

  • Siegel M, Warden MR, Miller EK (2009) Phase-dependent neuronal coding of objects in short-term memory. Proc Natl Acad Sci 106:21341–21346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sreedharan J, Blair IP, Tripathi VB, Xun H et al (2008) TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319:1668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taglialatela G, Hogan D, Zhang WR, Dineley KT (2009) Intermediate- and long-term recognition memory deficits in Tg2576 mice are reversed with acute calcineurin inhibition. Behav Brain Res 200:95–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomson DJ (1982) Spectrum estimation and harmonic analysis. Proc IEEE 70:1055–1096

    Article  Google Scholar 

  • Traub RD et al (2005) Single-column thalamocortical network model exhibiting gamma oscillations, sleep spindles, and epileptogenic bursts. J Neurophysiol 93:2194–2232

    Article  PubMed  Google Scholar 

  • Verbitsky M (2004) Altered hippocampal transcript profile accompanies an age-related spatial memory deficit in mice. Learn Memory 11:253–260

    Article  Google Scholar 

  • Vertes RP (2005) Hippocampal theta rhythm: a tag for short-term memory. Hippocampus 15:923–935

    Article  CAS  PubMed  Google Scholar 

  • Vogel-Ciernia A, Wood MA (2014) Examining object location and object recognition memory in mice. Curr Protoc Neurosci 69:8–31

    PubMed  PubMed Central  Google Scholar 

  • White JA, Banks MI, Pearce RA, Kopell NJ (2000) Networks of interneurons with fast and slow γ-aminobutyric acid type A (GABAA) kinetics provide substrate for mixed gamma-theta rhythm. Proc Natl Acad Sci 97:8128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng C, Zhang T (2013) Alteration of phase–phase coupling between theta and gamma rhythms in a depression-model of rats. Cogn Neurodyn 7:167–172

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants from the National Natural Science Foundation of China (31771148) and 111 Project (B08011).

Author information

Authors and Affiliations

Authors

Contributions

TZ designed the study; EK performed numerical experiments; YS and ZC performed the animal experiments; EK and TZ wrote the manuscript.

Corresponding author

Correspondence to Tao Zhang.

Ethics declarations

Conflict of interest

There is not a conflict of interest for all authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, E., Shang, Y., Cheng, Z. et al. U1 snRNA over-expression affects neural oscillations and short-term memory deficits in mice. Cogn Neurodyn 13, 313–323 (2019). https://doi.org/10.1007/s11571-019-09528-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-019-09528-x

Keywords

Navigation