Skip to main content
Log in

Vibrational resonance in a randomly connected neural network

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

A randomly connected network is constructed with similar characteristics (e.g., the ratio of excitatory and inhibitory neurons, the connection probability between neurons, and the axonal conduction delays) as that in the mammalian neocortex and the effects of high-frequency electrical field on the response of the network to a subthreshold low-frequency electrical field are studied in detail. It is found that both the amplitude and frequency of the high-frequency electrical field can modulate the response of the network to the low-frequency electric field. Moreover, vibrational resonance (VR) phenomenon induced by the two types of electrical fields can also be influenced by the network parameters, such as the neuron population, the connection probability between neurons and the synaptic strength. It is interesting that VR is found to be related with the ratio of excitatory neurons that are under high-frequency electrical stimuli. In summary, it is suggested that the interaction of excitatory and inhibitory currents is also an important factor that can influence the performance of VR in neural networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ağaoğlu SN, Çalim A, Özer M, Uzuntarla M (2016) Effects of synaptic heterogeneity on vibrational resonance in biological neural networks. In: Medical technologies national congress (TIPTEKNO), pp 1–4

  • Bateup HS, Johnson CA, Denefrio CL, Saulnier JL, Kornacker K, Sabatini BL (2013) Excitatory/inhibitory synaptic imbalance leads to hippocampal hyperexcitability in mouse models of tuberous sclerosis. Neuron 78(3):510–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benzi R, Sutera A, Vulpiani A (1981) The mechanism of stochastic resonance. J Phys A Math Gen 14(11):L453–L457

    Article  Google Scholar 

  • Bikson M, Inoue M, Akiyama H, Deans JK, Fox JE, Miyakawa H, Jefferys JG (2004) Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro. J Physiol 557(1):175–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chavet LE, Kasschau M, Datta A, Knotkova H, Stevens MC, Alonzo A, Loo C, Krull KR, Bikson M (2015) Remotely-supervised transcranial direct current stimulation (tdcs) for clinical trials: guidelines for technology and protocols. Front Syst Neurosci 9:26

    Google Scholar 

  • Chizhevsky VN (2008) Analytical study of vibrational resonance in an overdamped bistable oscillator. Int J Bifurc Chaos 18(6):1767–1773

    Article  Google Scholar 

  • Chizhevsky VN, Giacomelli G (2005) Improvement of signal-to-noise ratio in a bistable optical system: comparison between vibrational and stochastic resonance. Phys Rev A 71(1):011801

    Article  CAS  Google Scholar 

  • Deans JK, Powell AD, Jefferys JGR (2007) Sensitivity of coherent oscillations in rat hippocampus to ac electric fields. J Physiol 583(2):555–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng B, Wang J, Wei X, Tsang KM, Chan WL (2010) Vibrational resonance in neuron populations. Chaos 20(1):013113

    Article  PubMed  Google Scholar 

  • Diesmann M, Gewaltig MO, Aertsen A (1999) Stable propagation of synchronous spiking in cortical neural networks. Nature 402(6761):529–533

    Article  CAS  PubMed  Google Scholar 

  • Fraccalvieri M, Salomone M, Zingarelli EM, Rivarossa F, Bruschi S (2015) Electrical stimulation for difficult wounds: only an alternative procedure? Int Wound J 12(6):669–673

    Article  PubMed  Google Scholar 

  • Fregni F, Boggio PS, Lima MC, Ferreira MJL, Wagner T, Rigonatti SP, Castro AW, Souza DR, Riberto M, Freedman SD, Nitsche MA, Pascual-Leone A (2006) A sham-controlled, phase ii trial of transcranial direct current stimulation for the treatment of central pain in traumatic spinal cord injury. Pain 122(1–2):197–209

    Article  PubMed  Google Scholar 

  • Fröehlich F, McCormick DA (2010) Endogenous electric fields may guide neocortical network activity. Neuron 67(1):129–143

    Article  CAS  Google Scholar 

  • Gammaitoni L, Hänggi P, Jung P, Marchesoni F (1998) Stochastic resonance. Rev Mod Phys 70(1):223–287

    Article  CAS  Google Scholar 

  • Gravier A, Quek C, Duch W, Wahab A, Gravier-Rymaszewska J (2016) Neural network modelling of the influence of channelopathies on reflex visual attention. Cogn Neurodyn 10(1):49–72

    Article  PubMed  Google Scholar 

  • Guo D, Li C (2011) Signal propagation in feedforward neuronal networks with unreliable synapses. J Comput Neurosci 30(3):567–587

    Article  CAS  PubMed  Google Scholar 

  • Haider B, McCormick DA (2009a) Rapid neocortical dynamics: cellular and network mechanisms. Neuron 62(2):171–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haider B, McCormick DA (2009b) Rapid neocortical dynamics: cellular and network mechanisms. Neuron 62(2):171–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hånell A, Greer JE, Jacobs KM (2015) Increased network excitability due to altered synaptic inputs to neocortical layer v intact and axotomized pyramidal neurons after mild traumatic brain injury. J Neurotrauma 32(20):1590–1598

    Article  PubMed  PubMed Central  Google Scholar 

  • Iyer MB, Mattu U, Grafman J, Lomarev M, Sato S, Wassermann EM (2005) Safety and cognitive effect of frontal DC brain polarization in healthy individuals. Neurology 64(5):872–875

    Article  CAS  PubMed  Google Scholar 

  • Izhikevich EM (2003) Simple model of spiking neurons. IEEE Trans Neural Netw 14(6):1569–1572

    Article  CAS  PubMed  Google Scholar 

  • Kawaguchi M, Mino H, Durand DM (2011) Stochastic resonance can enhance information transmission in neural networks. IEEE Trans Biomed Eng 58(7):1950–1958

    Article  PubMed  Google Scholar 

  • Kim SY, Lim W (2017) Dynamical responses to external stimuli for both cases of excitatory and inhibitory synchronization in a complex neuronal network. Cogn Neurodyn 11(5):395–413

    Article  PubMed  PubMed Central  Google Scholar 

  • Kirov R, Weiss C, Siebner HR, Born J, Marshall L (2009) Slow oscillation electrical brain stimulation during waking promotes eeg theta activity and memory encoding. Proc Natl Acad Sci USA 106(36):15460–15465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kreuz T, Luccioli S, Torcini A (2006) Double coherence resonance in neuron models driven by discrete correlated noise. Phys Rev Lett 97(23):238101

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Rotter S, Aertsen A (2010) Spiking activity propagation in neuronal networks: reconciling different persepctives on neural coding. Nat Rev Neurosci 11(9):615–627

    Article  CAS  PubMed  Google Scholar 

  • Li X, Wang J, Hu W (2007) Effects of chemical synapses on the enhancement of signal propagation in coupled neurons near the canard regime. Phys Rev E 76(4):041902

    Article  CAS  Google Scholar 

  • Liebetanz D, Klinker F, Hering D, Koch R, Nitsche MA, Potschka H, Löscher W, Paulus W, Tergau F (2006) Antoconvulsant effects of transcranial direct-current stimulation (tDCS) in the rat cortical ramp model of focal epilepsy. Epilepsia 47(7):1216–1224

    Article  PubMed  Google Scholar 

  • Lyamzin DR, Barnes SJ, Donato R, Garcia-Lazaro JA, Keck T, Lesica NA (2015) Nonlinear transfer of signal and noise correlations in cortical networks. J Neurosci 35(21):8065–8080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Megam Ngouonkadi EB, Fotsin HB, Kabong Nono M, Louodop Fotso PH (2016) Noise effects on robust synchronization of a small pacemaker neuronal ensemble via nonlinear controller: electronic circuit design. Cogn Neurodyn 10(5):385–404

    Article  PubMed  PubMed Central  Google Scholar 

  • Men C, Wang J, Qin YM, Deng B, Tsang KM, Chan WL (2012) Propagation of spiking regularity and double coherence resonance in feedforward networks. Chaos 22(1):013104

    Article  PubMed  Google Scholar 

  • Nitsche MA, Paulus W (2000) Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol 527(3):633–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okun M, Steinmetz NA, Cossell L, Iacaruso MF, Ko H, Bartho P, Moore T, Hofer SB, Mrsic-Flogel TD, Carandini M, Harris KD (2015) Diverse coupling of neurons to populations in sensory cortex. Nature 521(7553):511–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pogosyan A, Gaynor LD, Eusebio A, Brown P (2009) Boosting cortical activity at beta-band frequencies slows movement in humans. Curr Biol 19(19):1637–1641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin YM, Wang J, Men C, Deng B, Xl Wei (2011) Vibrational resonance in feedforward network. Chaos 21(2):023133

    Article  PubMed  Google Scholar 

  • Qin YM, Wang J, Men C, Deng B, Wei XL, Yu HT, Chan WL (2014) Stochastic resonance in feedforward acupuncture networks. Commun Nonlinear Sci 19(10):3660–3670

    Article  Google Scholar 

  • Radman T, Ramos RL, Brumberg JC, Bikson M (2009) Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro. Brain Stimul 2(4):215–228

    Article  PubMed  PubMed Central  Google Scholar 

  • Reato D, Rahman A, Bikson M, Parra LC (2010) Low-intensity electrical stimulation affects network dynamics by modulating population rate and spike timing. J Neurosci 30(45):15067–15079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renart A, de la Rocha J, Bartho P, Hollender L, Parge N, Reyes A, Harris KD (2010) The asychronous state in cortical circuits. Science 327(5965):587–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stacey WC, Durand DM (2002) Noise and coupling affect signal detection and bursting in a simulated physiological neural network. J Neurophysiol 88(5):2598–2611

    Article  PubMed  Google Scholar 

  • Sun J, Deng B, Liu C, Yu H, Wang J, Wei X, Zhao J (2013) Vibrational resonance in neuron populations with hybrid synapses. Appl Math Model 37(9):6311–6324

    Article  Google Scholar 

  • Thomson JM, Doruk D, Mascio B, Fregni F, Cerruti C (2015) Transcranial direct current stimulation modulates efficiency of reading processes. Front Hum Neurosci 9:114

    Article  PubMed  PubMed Central  Google Scholar 

  • Ullner E, Zaikin A, García-Ojalvo J, Báscones R, Kurths J (2003) Vibrational resonance and vibrational propagation in excitable systems. Phys Lett A 312(5):348–354

    Article  CAS  Google Scholar 

  • Xue M, Wang J, Deng B, Wei X (2013) Vibrational resonance in feedforward neuronal network with unreliable synapses. Eur Phys J B 86:122

    Article  CAS  Google Scholar 

  • Yu H, Wang J, Liu C, Deng B, Wei X (2011) Vibrational resonance in excitable neuronal systems. Chaos 21(4):043101

    Article  PubMed  Google Scholar 

  • Yu H, Guo X, Wang J, Deng B, Wei X (2014) Effects of spike-time-dependent plasticity on the stochastic resonance of small-world neuronal networks. Chaos 24(3):033125

    Article  PubMed  Google Scholar 

  • Yu H, Guo X, Wang J, Deng B, Wei X (2015) Vibrational resonance in adaptive small-world neuronal networks with spike-timing-dependent plasticity. Physica A 436(26):170–179

    Article  Google Scholar 

  • Zaikin AA, López L, Baltanás JP, Kurths J, Sanjuán MA (2002) Vibrational resonance in a noise-induced structure. Phys Rev E 66(1):011106

    Article  CAS  Google Scholar 

  • Zhao J, Deng B, Qin Y, Men C, Wang J, Wei X, Sun J (2017) Weak electric fields detectability in a noisy neural network. Cogn Neurodyn 11(1):81–90

    Article  PubMed  Google Scholar 

  • Zhao J, Qin YM, Che YQ (2018) Effects of topologies on signal propagation in feedforward networks. Chaos 28(1):013117

    Article  PubMed  Google Scholar 

  • Zhou CS, Kurths J, Hu BB (2003) Frequency and phase locking of noise-sustained oscillations in coupled excitable systems: array-enhanced resonances. Phys Rev E 67(3):030101

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 61431013), the Natural Science Foundation of Tianjin (Nos. 17JCQNJC03700 and 15JCYBJC19000), the Tianjin Municipal Special Program of Talents Development for Excellent Youth Scholars, and the Fundamental Research Funds for the Central Universities (No. SWU1709620). We would also acknowledge the support of Tianjin University of Technology and Education (No. KYQD14006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanqiu Che or Jia Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, Y., Han, C., Che, Y. et al. Vibrational resonance in a randomly connected neural network. Cogn Neurodyn 12, 509–518 (2018). https://doi.org/10.1007/s11571-018-9492-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-018-9492-2

Keywords

Navigation