Cognitive Neurodynamics

, Volume 12, Issue 3, pp 315–342 | Cite as

Effect of spike-timing-dependent plasticity on stochastic burst synchronization in a scale-free neuronal network

  • Sang-Yoon Kim
  • Woochang Lim
Research Article


We consider an excitatory population of subthreshold Izhikevich neurons which cannot fire spontaneously without noise. As the coupling strength passes a threshold, individual neurons exhibit noise-induced burstings. This neuronal population has adaptive dynamic synaptic strengths governed by the spike-timing-dependent plasticity (STDP). However, STDP was not considered in previous works on stochastic burst synchronization (SBS) between noise-induced burstings of sub-threshold neurons. Here, we study the effect of additive STDP on SBS by varying the noise intensity D in the Barabási–Albert scale-free network (SFN). One of our main findings is a Matthew effect in synaptic plasticity which occurs due to a positive feedback process. Good burst synchronization (with higher bursting measure) gets better via long-term potentiation (LTP) of synaptic strengths, while bad burst synchronization (with lower bursting measure) gets worse via long-term depression (LTD). Consequently, a step-like rapid transition to SBS occurs by changing D, in contrast to a relatively smooth transition in the absence of STDP. We also investigate the effects of network architecture on SBS by varying the symmetric attachment degree \(l^*\) and the asymmetry parameter \(\Delta l\) in the SFN, and Matthew effects are also found to occur by varying \(l^*\) and \(\Delta l\). Furthermore, emergences of LTP and LTD of synaptic strengths are investigated in details via our own microscopic methods based on both the distributions of time delays between the burst onset times of the pre- and the post-synaptic neurons and the pair-correlations between the pre- and the post-synaptic instantaneous individual burst rates (IIBRs). Finally, a multiplicative STDP case (depending on states) with soft bounds is also investigated in comparison with the additive STDP case (independent of states) with hard bounds. Due to the soft bounds, a Matthew effect with some quantitative differences is also found to occur for the case of multiplicative STDP.


Spike-timing-dependent plasticity Stochastic burst synchronization Scale-free network Subthreshold neurons 



This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant No. 20162007688).


  1. Abbott LF, Blum KI (1996) Functional significance of long-term potentiation for sequence learning and prediction. Cereb Cortex 6:406–416PubMedCrossRefGoogle Scholar
  2. Abbott LF, Nelson SB (2000) Synaptic plasticity: taming the beast. Nat Neurosci 3:1178–1183PubMedCrossRefGoogle Scholar
  3. Albert R, Barabási AL (2002) Statistical mechanics of complex networks. Rev Mod Phys 74:47–97CrossRefGoogle Scholar
  4. Barabási AL, Albert R (1999) Emergence of scaling in random networks. Science 286:509–512PubMedCrossRefGoogle Scholar
  5. Bassett DS, Bullmore E (2006) Small-world brain networks. Neuroscientist 12:512–523PubMedCrossRefGoogle Scholar
  6. Batista CAS, Batista AM, de Pontes JAC, Viana RL, Lopes SR (2007) Chaotic phase synchronization in scale-free networks of bursting neuron. Phys Rev E 76:016218CrossRefGoogle Scholar
  7. Batista CAS, Batista AM, de Pontes JAC, Lopes SR, Viana RL (2009) Bursting synchronization in scale-free networks. Chaos Soliton Fract 41:2220–2225CrossRefGoogle Scholar
  8. Batista CAS, Lopes SR, Viana RL, Batista AM (2010) Delayed feedback control of bursting synchronization in a scale-free neuronal network. Neural Netw 23:114–124PubMedCrossRefGoogle Scholar
  9. Batista CA, Lameu EL, Batista AM, Lopes SR, Pereira T, Zamora-Lopez G, Kurths J, Viana RL (2012) Phase synchronization of bursting neurons in clustered small-world networks. Phys Rev E 86:016211CrossRefGoogle Scholar
  10. Bi GQ, Poo MM (1998) Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci 18:10464–10472PubMedCrossRefGoogle Scholar
  11. Bi GQ, Poo MM (2001) Synaptic modification by correlated activity: Hebbs postulate revisited. Annu Rev Neurosci 24:139–166PubMedCrossRefGoogle Scholar
  12. Bienenstock EL, Cooper LN, Munro PW (1982) Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci 2:32–48PubMedCrossRefGoogle Scholar
  13. Birtoli B, Ulrich D (2004) Firing mode-dependent synaptic plasticity in rat neocortical pyramidal neurons. J Neurosci 24:4935–4940PubMedCrossRefGoogle Scholar
  14. Blum KI, Abbott LF (1996) A model of spatial map formation in the hippocampus of the rat. Neural Comput 8:85–93PubMedCrossRefGoogle Scholar
  15. Bonifazi P, Goldin M, Picardo MA, Jorquera I, Cattani A, Bianconi G, Represa A, Ben-Ari Y, Cossart R (2009) GABAergic hub neurons orchestrate synchrony in developing hippocampal networks. Science 326:1419–1424PubMedCrossRefGoogle Scholar
  16. Borges RR, Borges FS, Batista AM, Lameu EL, Viana RL, Iarosz KC, Caldas IL, Sanjuán MAF (2016) Effects of spike timing-dependent plasticity on the synchronization in a random Hodgkin–Huxley neuronal network. Commun Nonlinear Sci Numer Simulat 34:12–22CrossRefGoogle Scholar
  17. Borges RR, Borges FS, Lameu EL, Batista AM, Iarosz KC, Caldas IL, Antonopoulos CG, Batista MS (2017) Spike timing-dependent plasticity induces non-trivial topology in the brain. Neural Netw 88:58–64PubMedCrossRefGoogle Scholar
  18. Braun HA, Wissing H, Schäfer K, Hirsh MC (1994) Oscillation and noise determine signal transduction in shark multimodal sensory cells. Nature 367:270–273PubMedCrossRefGoogle Scholar
  19. Brunel N, Wang XJ (2003) What determines the frequency of fast network oscillations with irregular neural discharges? I. Synaptic dynamics and excitation-inhibition balance. J Neurophysiol 90:415–430PubMedCrossRefGoogle Scholar
  20. Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186–198PubMedCrossRefGoogle Scholar
  21. Butera RJ, Rinzel J, Smith JC (1999) Models of respiratory rhythm generation in the pre-Botzinger complex. I. Bursting pacemaker neurons. J Neurophysiol 82:382–397PubMedCrossRefGoogle Scholar
  22. Buzsáki G (2006) Rhythms of the brain. Oxford University Press, New YorkCrossRefGoogle Scholar
  23. Buzsáki G, Geisler C, Henze DA, Wang XJ (2004) Interneuron diversity series: circuit complexity and axon wiring economy of cortical interneurons. Trends Neurosci 27:186–193PubMedCrossRefGoogle Scholar
  24. Buzsáki G, Wang XJ (2012) Mechanisms of gamma oscillations. Annu Rev Neurosci 35:203–225PubMedPubMedCentralCrossRefGoogle Scholar
  25. Caporale N, Dan Y (2008) Spike timing-dependent plasticity: a Hebbian learning rule. Annu Rev Neurosci 31:25–46PubMedCrossRefGoogle Scholar
  26. Chay TR, Keizer J (1983) Minimal model for membrane oscillations in the pancreatic \(\beta\)-cell. Biophys J 42:181–190PubMedPubMedCentralCrossRefGoogle Scholar
  27. Chklovskii DB, Mel BW, Svoboda K (2004) Cortical rewiring and information storage. Nature 431:782–788PubMedCrossRefGoogle Scholar
  28. Connors BW, Gutnick MJ (1990) Intrinsic firing patterns of diverse neocortical neurons. Trends Neurosci 13:99–104PubMedCrossRefGoogle Scholar
  29. Coombes S, Bressloff PC (eds) (2005) Bursting: the genesis of rhythm in the nervous system. World Scientific, SingaporeGoogle Scholar
  30. Dan Y, Poo MM (2004) Spike timing-dependent plasticity of neural circuits. Neuron 44:23–30PubMedCrossRefGoogle Scholar
  31. Dan Y, Poo MM (2006) Spike timing-dependent plasticity: from synapse to perception. Physiol Rev 86:1033–1048PubMedCrossRefGoogle Scholar
  32. Debanne D, Gähwiler BH, Thompson SM (1998) Long-term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures. J Physiol 507(1):237–247PubMedPubMedCentralCrossRefGoogle Scholar
  33. Del Negro CA, Hsiao CF, Chandler SH, Garfinkel A (1998) Evidence for a novel bursting mechanism in rodent trigeminal neurons. Biophys J 75:174–182PubMedPubMedCentralCrossRefGoogle Scholar
  34. Dhamala M, Jirsa V, Ding M (2004) Transitions to synchrony in coupled bursting neurons. Phys Rev Lett 92:028101PubMedCrossRefGoogle Scholar
  35. Duan L, Fan D, Lu Q (2013) Hopf bifurcation and bursting synchronization in an excitable systems with chemical delayed coupling. Cogn Neurodyn 7:341–349PubMedPubMedCentralCrossRefGoogle Scholar
  36. Egger V, Feldmeyer D, Sakmann B (1999) Coincidence detection and changes of synaptic efficacy in spiny stellate neurons in rat barrel cortex. Nat Neurosci 2:1098–1105PubMedCrossRefGoogle Scholar
  37. Eguíluz VM, Chialvo DR, Cecchi GA, Baliki M, Apkarian AV (2005) Scale-free brain functional networks. Phys Rev Lett 94:018102PubMedCrossRefGoogle Scholar
  38. Elson RC, Selverston AI, Huerta R, Rulkov NF, Rabinovich MI, Abarbanel HDI (1998) Synchronous behavior of two coupled biological neurons. Phys Rev Lett 81:5692–5695CrossRefGoogle Scholar
  39. Feldman DE (2000) Timing-based LTP and LTD at vertical inputs to layer II/III pyramidal cells in rat barrel cortex. Neuron 27:45–56PubMedCrossRefGoogle Scholar
  40. Feldman DE (2012) The spike-timing dependence of plasticity. Neuron 75:556–571PubMedPubMedCentralCrossRefGoogle Scholar
  41. Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47PubMedCrossRefGoogle Scholar
  42. Ferrari FAS, Viana RL, Lopes SR, Stoop R (2015) Phase synchronization of coupled bursting neurons and the generalized Kuramoto model. Neural Netw 66:107–118PubMedCrossRefGoogle Scholar
  43. Freeman LC (1977) A set of measures of centrality based on betweenness. Sociometry 40:35–41CrossRefGoogle Scholar
  44. Freeman LC (1978) Centrality in social networks conceptual clarification. Soc Netw 1:215–239CrossRefGoogle Scholar
  45. Garcia-Rill E (2015) Waking and the reticular activating system in health and disease. Elsevier, LondonGoogle Scholar
  46. Gerstner W, Kempter R, van Hemmen JL, Wagner H (1996) A neuronal learning rule for sub-millisecond temporal coding. Nature 383:76–81PubMedCrossRefGoogle Scholar
  47. Gray CM (1994) Synchronous oscillations in neuronal systems: mechanisms and functions. J Comput Neurosci 1:11–38PubMedCrossRefGoogle Scholar
  48. Gray CM, McCormick DA (1996) Chattering cells: superficial pyramidal neurons contributing to the generation of synchronous oscillations in the visual cortex. Science 274:109–113PubMedCrossRefGoogle Scholar
  49. Gütig R, Aharonov R, Rotter S, Sompolinksy H (2003) Learning input correlations through nonlinear temporally asymmetric Hebbian plasticity. J Neurosci 23:3697–3714PubMedCrossRefGoogle Scholar
  50. Hammond C, Bergman H, Brown P (2007) Pathological synchronization in Parkinsons disease: networks, models and treatments. Trends Neurosci 30:357–364PubMedCrossRefGoogle Scholar
  51. Harnett MT, Bernier BE, Ahn KC, Morikawa H (2009) Burst-timing-dependent plasticity of NMDA receptor-mediated transmission in midbrain dopamine neurons. Neuron 62:826–838PubMedPubMedCentralCrossRefGoogle Scholar
  52. Hebb DO (1949) The organization of behavior; a neuropsychological theory. Wiley, New YorkGoogle Scholar
  53. Hindmarsh JL, Rose RM (1982) A model of the nerve impulse using two first-order differential equations. Nature 296:162–164PubMedCrossRefGoogle Scholar
  54. Hindmarsh JL, Rose RM (1984) A model of neuronal bursting using three coupled first order differential equations. Proc R Soc Lond Ser B 221:87–102CrossRefGoogle Scholar
  55. Hodgkin AL (1948) The local electric changes associated with repetitive action in a non-medullated axon. J Physiol 107:165–181PubMedPubMedCentralCrossRefGoogle Scholar
  56. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544PubMedPubMedCentralCrossRefGoogle Scholar
  57. Hu B, Zhou C (2000) Phase synchronization in coupled nonidentical excitable systems and array-enhanced coherence resonance. Phys Rev E 61:R1001–R1004CrossRefGoogle Scholar
  58. Huber MT, Braun HA (2006) Stimulus-response curves of a neuronal model for noisy subthreshold oscillations and related spike generation. Phys Rev E 73:041929CrossRefGoogle Scholar
  59. Ivanchenko MV, Osipov GV, Shalfeev VD, Kurths J (2004) Phase synchronization in ensembles of bursting oscillators. Phys Rev Lett 93:134101PubMedCrossRefGoogle Scholar
  60. Izhikevich EM (2000) Neural excitability, spiking and bursting. Int J Bifurcat Chaos 10:1171–1266CrossRefGoogle Scholar
  61. Izhikevich EM (2003) Simple model of spiking neurons. IEEE Trans Neural Netw 14:1569–1572PubMedCrossRefGoogle Scholar
  62. Izhikevich EM (2004) Which model to use for cortical spiking neurons? IEEE Trans Neural Netw 15:1063–1070PubMedCrossRefGoogle Scholar
  63. Izhikevich EM (2006) Bursting. Scholarpedia 1(3):1300CrossRefGoogle Scholar
  64. Izhikevich EM (2007) Dynamical systems in neuroscience. MIT Press, CambridgeGoogle Scholar
  65. Izhikevich EM, Desai NS, Walcott EC, Hoppensteadt FC (2003) Bursts as a unit of neural information: selective communication via resonance. Trends Neurosci 26:161–167PubMedCrossRefGoogle Scholar
  66. Ji D, Wilson M (2007) Coordinated memory replay in the visual cortex and hippocampus during sleep. Nat Neurosci 10:100–107PubMedCrossRefGoogle Scholar
  67. Kaiser M, Martin R, Andras P, Young MP (2007) Simulation of robustness against lesions of cortical networks. Eur J Neurosci 25:3185–3192PubMedCrossRefGoogle Scholar
  68. Kepecs A, van Rossum MCW, Song S, Tegner J (2002) Spike-timing-dependent plasticity: common themes and divergent vistas. Biol Cybern 87:446–458PubMedCrossRefGoogle Scholar
  69. Khodagholy D, Gelinas N, Buzsáki G (2017) Learning-enhanced coupling between ripple oscillations in association cortices and hippocampus. Science 358:369–372PubMedPubMedCentralCrossRefGoogle Scholar
  70. Kim SY, Lim W (2015a) Noise-induced burst and spike synchronizations in an inhibitory small-world network of subthreshold bursting neurons. Cogn Neurodyn 9:179–200PubMedCrossRefGoogle Scholar
  71. Kim SY, Lim W (2015b) Thermodynamic order parameters and statistical-mechanical measures for characterization of the burst and spike synchronizations of bursting neurons. Physica A 438:544–559CrossRefGoogle Scholar
  72. Kim SY, Lim W (2015c) Fast sparsely synchronized brain rhythms in a scale-free neural network. Phys Rev E 92:022717CrossRefGoogle Scholar
  73. Kim SY, Lim W (2016) Effect of network architecture on burst and spike synchronization in a scale-free network of bursting neurons. Neural Netw 79:53–77PubMedCrossRefGoogle Scholar
  74. Kim SY, Lim W (2018) Stochastic spike synchronization in a small-world neural network with spike-timing-dependent plasticity. Neural Netw 97:92–106PubMedCrossRefGoogle Scholar
  75. Kim SY, Kim Y, Hong DG, Kim J, Lim W (2012) Stochastic bursting synchronization in a population of subthreshold Izhikevich neurons. J Korean Phys Soc 60:1441–1447CrossRefGoogle Scholar
  76. Kinard TA, de Vries G, Sherman A, Satin LS (1999) Modulation of the bursting properties of single mouse pancreatic \(\beta\)-cells by artificial conductances. Biophys J 76:1423–1435PubMedPubMedCentralCrossRefGoogle Scholar
  77. Kornoski J (1948) Conditional reflexes and neuron organization. Cambridge University Press, CambridgeGoogle Scholar
  78. Krahe R, Gabbian F (2004) Burst firing in sensory system. Nat Rev Neurosci 5:13–23PubMedCrossRefGoogle Scholar
  79. Lameu EL, Batista CAS, Batista AM, Larosz K, Viana RL, Lopes SR, Kurths J (2012) Suppression of bursting synchronization in clustered scale-free (rich-club) neuronal networks. Chaos 22:043149PubMedCrossRefGoogle Scholar
  80. Larimer P, Strowbridge BW (2008) Nonrandom local circuits in the dentate gyrus. J Neurosci 28:12212–12223PubMedPubMedCentralCrossRefGoogle Scholar
  81. Lee SH, Govindaiah G, Cox CL (2007) Heterogeneity of firing properties among rat thalamic reticular nucleus neurons. J Physiol 582:195–208PubMedPubMedCentralCrossRefGoogle Scholar
  82. Li X, Ouyang G, Usami A, Ikegaya Y, Sik A (2010) Scale-free topology of the CA3 hippocampal network: a novel method to analyze functional neuronal assemblies. Biophys J 98:1733–1741PubMedPubMedCentralCrossRefGoogle Scholar
  83. Lisman J (1997) Bursts as a unit of neural information: making unreliable synapse reliable. Trends Neurosc 20:38–43CrossRefGoogle Scholar
  84. Llinás RL, Jahnsen H (1982) Electrophysiology of mammalian thalamic neurons in vitro. Nature 297:406–408PubMedCrossRefGoogle Scholar
  85. Longtin A (1997) Autonomous stochastic resonance in bursting neurons. Phys Rev E 55:868–876CrossRefGoogle Scholar
  86. Longtin A, Hinzer K (1996) Encoding with bursting, subthreshold oscillations and noise in mammalian cold receptors. Neural Comput 8:215–255PubMedCrossRefGoogle Scholar
  87. Lourens MAJ, Schwab BC, Nirody JA, Meijer HGE, van Gils SA (2015) Exploiting pallidal plasticity for stimulation in Parkinsons disease. J Neural Eng 12:026005PubMedCrossRefGoogle Scholar
  88. Markram H, Lübke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275:213–215PubMedCrossRefGoogle Scholar
  89. Markram H, Gerstner W, Sjöström PJ (2012) Spike-timing-dependent plasticity: a comprehensive overview. Front Synaptic Neurosci 4:2PubMedPubMedCentralCrossRefGoogle Scholar
  90. McCormick DA, Huguenard JR (1992) A Model of the electrophysiological properties of thalamocortical relay neurons. J Neurophysiol 8:1384–1400CrossRefGoogle Scholar
  91. Mehta MR, Wilson M (2000) From hippocampus to V1: Effect of LTP on spatiotemporal dynamics of receptive fields. Neurocomputing 32:905–911CrossRefGoogle Scholar
  92. Meng P, Wang Q, Lu Q (2013) Bursting synchronization dynamics of pancreatic \(\beta\)-cells with electrical and chemical coupling. Cogn Neurodyn 7:197–212PubMedCrossRefGoogle Scholar
  93. Michalareas G, Vezoli J, van Pelt S, Schoffelen JM, Kennedy H, Fries P (2016) Alpha-beta and gamma rhythms subserve feedback and feedforward influences among human cortical areas. Neuron 89:384–397PubMedPubMedCentralCrossRefGoogle Scholar
  94. Miyawaki H, Diva K (2016) Regulation of hippocampal firing by network oscillations during sleep. Curr Biol 26:893–902PubMedPubMedCentralCrossRefGoogle Scholar
  95. Morgan RJ, Soltesz I (2008) Nonrandom connectivity of the epileptic dentate gyrus predicts a major role for neuronal hubs in seizures. Proc Natl Acad Sci USA 105:6179–6184PubMedPubMedCentralCrossRefGoogle Scholar
  96. Morrison A, Aertsen A, Diesmann M (2007) Spike-timing-dependent plasticity in balanced random networks. Neural Comput 19:1437–1467PubMedCrossRefGoogle Scholar
  97. Nishikawa T, Motter AE, Lai YC, Hoppensteadt FC (2003) Heterogeneity in oscillator networks: are smaller worlds easier to synchronize? Phys Rev Lett 91:014101PubMedCrossRefGoogle Scholar
  98. Oliva A, Fernández-Ruiz A, Buzsáki G, Berényi A (2016) Role of hippocampal CA2 region in triggering sharp-wave ripples. Neuron 91:1–14CrossRefGoogle Scholar
  99. Omelchenko I, Rosenblum M, Pikovsky A (2010) Synchronization of slow-fast systems. Eur Phys J 191:3–14Google Scholar
  100. Pereira T, Baptista M, Kurths J (2007) Multi-time-scale synchronization and information processing in bursting neuron networks. Eur Phys J Spec Top 146:155–168CrossRefGoogle Scholar
  101. Pernarowski M, Miura RM, Kevorkian J (1992) Perturbation techniques for models of bursting electrical activity in pancreatic \(\beta\)-cells. SIAM J Appl Math 52:1627–1650CrossRefGoogle Scholar
  102. Ploner M, Sorg C, Gross J (2017) Brain rhythms of pain. Trends Cogn Sci 21:100–110PubMedPubMedCentralCrossRefGoogle Scholar
  103. Popovych OV, Tass PA (2012) Desynchronizing electrical and sensory coordinated reset neuromodulation. Front Hum Neurosci 6:58PubMedPubMedCentralCrossRefGoogle Scholar
  104. Popovych OV, Yanchuk S, Tass PA (2013) Self-organized noise resistance of oscillatory neural networks with spike-timing-dependent plasticity. Sci Rep 3:2926PubMedPubMedCentralCrossRefGoogle Scholar
  105. Prado TdeL, Lopes SR, Batista CAS, Kurths J, Viana RL (2014) Synchronization of bursting Hodgkin-Huxley-type neurons in clustered networks. Phys Rev E 90:032818CrossRefGoogle Scholar
  106. Rinzel J (1985) Bursting oscillations in an excitable membrane model. In: Sleeman BD, Jarvis RJ (eds) Lecture notes in mathematics: vol. 1151. Ordinary and partial differential equations. Springer, Berlin, pp 304–316Google Scholar
  107. Rinzel J (1987) A formal classification of bursting mechanisms in excitable systems. In: Teramoto E, Yamaguti M (eds) Lecture notes in biomathematics: vol. 71. Mathematical topics in population biology, morphogenesis, and neurosciences. Springer, Berlin, pp 267–281CrossRefGoogle Scholar
  108. Rose RM, Hindmarsh JL (1985) A model of a thalamic neuron. Proc R Soc Lond Ser B 225:161–193CrossRefGoogle Scholar
  109. Roux L, Hu B, Eichler R, Stark E, Buzsáki G (2017) Sharp wave ripples during learning stabilize the hioppocampal map. Nat Neurosci 20:845–853PubMedPubMedCentralCrossRefGoogle Scholar
  110. Rubin JE (2007) Burst synchronization. Scholarpedia 2(10):1666CrossRefGoogle Scholar
  111. Rubin J, Lee DD, Sompolinsky H (2001) Equilibrium properties of temporally asymmetric Hebbian plasticity. Phys Rev Lett 86:364–367PubMedCrossRefGoogle Scholar
  112. Saleem AB, Lien AD, Krumin M, Haider B, Rosón MR, Ayaz A, Reinhold K, Busse L, Carandini M, Harris KD (2017) Subcortical source and modulation of the narrowband gamma oscillation in mouse visual cortex. Neuron 93:315–322PubMedPubMedCentralCrossRefGoogle Scholar
  113. San Miguel M, Toral R (2000) Stochastic effects in physical systems. In: Martinez J, Tiemann R, Tirapegui E (eds) Instabilities and nonequilibrium structures VI. Kluwer Academic Publisher, Dordrecht, pp 35–130CrossRefGoogle Scholar
  114. Scannell JW, Blakemore C, Young MP (1995) Analysis of connectivity in the cat cerebral cortex. J Neurosci 15:1463–1483PubMedCrossRefGoogle Scholar
  115. Scannell JW, Burns GAPC, Hilgetag CC, O’Neil MA, Young MP (1999) The connectional organization of the cortico-thalamic system of the cat. Cereb Cortex 9:277–299PubMedCrossRefGoogle Scholar
  116. Sejnowski TJ (1977) Storing covariance with nonlinearly interacting neurons. J Math Biol 4:303–321PubMedCrossRefGoogle Scholar
  117. Shatz CJ (1992) The developing brain. Sci Am 267:60–67PubMedCrossRefGoogle Scholar
  118. Shi X, Lu Q (2005) Firing patterns and complete synchronization of coupled Hindmarsh-Rose neurons. Chin Phys 14:77–85CrossRefGoogle Scholar
  119. Shi X, Lu Q (2009) Burst synchronization of electrically and chemically coupled map-based neurons. Physica A 388:2410–2419CrossRefGoogle Scholar
  120. Shilnikov A, Cymbalyuk G (2005) Transition between tonic spiking and bursting in a neuron model via the blue-sky catastrophe. Phys Rev Lett 94:048101PubMedCrossRefGoogle Scholar
  121. Shimazaki H, Shinomoto S (2010) Kernel bandwidth optimization in spike rate estimation. J Comput Neurosci 29:171–182PubMedCrossRefGoogle Scholar
  122. Shinohara Y, Kanamaru T, Suzuki H, Horita T, Aihara K (2002) Array-enhanced coherence resonance and forced dynamics in coupled FitzHugh–Nagumo neurons with noise. Phys Rev E 65:051906CrossRefGoogle Scholar
  123. Song S, Abbott LF (2001) Cortical development and remapping through spike timing-dependent plasticity. Neuron 32:339–350PubMedCrossRefGoogle Scholar
  124. Song S, Miller KD, Abbott LF (2000) Competitive Hebbian learning through spike-timing-dependent plasticity synaptic plasticity. Nat Neurosci 3:919–926PubMedCrossRefGoogle Scholar
  125. Song S, Sjöström PJ, Reigl M, Nelson S, Chklovskii DB (2005) Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biol 3:e68PubMedPubMedCentralCrossRefGoogle Scholar
  126. Sporns O (2011) Networks of the brain. MIT Press, CambridgeGoogle Scholar
  127. Sporns O, Betzel RF (2016) Modular brain networks. Annu Rev Psychol 67:19.1–19.28CrossRefGoogle Scholar
  128. Sporns O, Honey CJ (2006) Small worlds inside big brains. Proc Natl Acad Sci USA 103:19219–19220PubMedPubMedCentralCrossRefGoogle Scholar
  129. Sporns O, Tononi G, Edelman GM (2000) Theoretical neuroanatomy: relating anatomical and functional connectivity in graphs and cortical connection matrices. Cereb Cortex 10:127–141PubMedCrossRefGoogle Scholar
  130. Sporns O, Chialvo DR, Kaiser M, Hilgetag CC (2004) Organization, development and function of complex brain networks. Trends Cogn Sci 8:418–425PubMedCrossRefGoogle Scholar
  131. Stent GS (1973) A physiological mechanism for Hebbs postulate of learning. Proc Natl Acad Sci USA 70:997–1001PubMedPubMedCentralCrossRefGoogle Scholar
  132. Stern EA, Jaeger D, Wilson CJ (1998) Membrane potential synchrony of simultaneously recorded striatal spiny neurons in vivo. Nature 394:475–478PubMedCrossRefGoogle Scholar
  133. Su H, Alroy G, Kirson ED, Yaari Y (2001) Extracellular calcium modulates persistent sodium current-dependent burst-firing in hippocampal pyramidal neurons. J Neurosci 21:4173–4182PubMedCrossRefGoogle Scholar
  134. Sun X, Lei J, Perc M, Kurths J, Chen G (2011) Burst synchronization transitions in a neuronal network of subnetworks. Chaos 21:016110PubMedCrossRefGoogle Scholar
  135. Swann NC, de Hemptinne C, Miocinovic S, Qasim S, Wang SS, Ziman N, Ostrem JL, San Luciano M, Galifianakis NB, Starr PA (2017) Gamma Oscillations in the Hyperkinetic State Detected with Chronic Human Brain Recordings in Parkinson’s Disease. J Neurosci 36:6445–6458CrossRefGoogle Scholar
  136. Tanaka G, Ibarz B, Sanjuan MA, Aihara K (2006) Synchronization and propagation of bursts in networks of coupled map neurons. Chaos 16:013113PubMedCrossRefGoogle Scholar
  137. Taxidis J, Anastassiou CA, Diva K, Koch C (2015) Local field potentials encode place cell ensemble activation during hippocampal sharp wave ripples. Neuron 87:590–604PubMedCrossRefGoogle Scholar
  138. Traub RD, Whittington MA (2010) Cortical oscillations in health and diseases. Oxford University Press, New YorkCrossRefGoogle Scholar
  139. Tzounopoulos T, Kim Y, Oertel D, Trussell LO (2004) Cell-specific, spike timing-dependent plasticities in the dorsal cochlear nucleus. Nat Neurosci 7:719–725PubMedCrossRefGoogle Scholar
  140. Uhlhaas PJ, Singer W (2006) Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron 52:155–168PubMedCrossRefGoogle Scholar
  141. Ujma PP, Bódizs R, Gombos F, Stintzing J, Konrad BN, Ginzel L, Steiger A, Dresler M (2015) Nap sleep spindle correlates of intelligence. Sci Rep 5:17159PubMedPubMedCentralCrossRefGoogle Scholar
  142. Varona P, Torres JJ, Abarbanel HDI, Rabinovych MI, Elson RC (2001) Dynamics of two electrically coupled chaotic neurons: experimental observations and model analysis. Biol Cybern 84:91–101PubMedCrossRefGoogle Scholar
  143. Veit J, Hakim R, Jadi MP, Sejnowski TJ, Adesnik H (2017) Cortical gamma band synchronization through somatostatin interneurons. Nat Neurosci 20:951–959PubMedPubMedCentralCrossRefGoogle Scholar
  144. Vogels TP, Froemke RC, Doyon N, Gilson M, Haas JS, Liu R, Maffei A, Miller P, Wierenga CJ, Woodin MA, Zenke F, Sprekeler H (2013) Inhibitory synaptic plasticity: spike timing-dependence and putative network function. Front Neural Circuits 7:119PubMedPubMedCentralCrossRefGoogle Scholar
  145. von der Malsburg C (1973) Self-organization of orientation sensitive cells in the striate cortex. Kybernetik 14:85–100PubMedCrossRefGoogle Scholar
  146. van Vreeswijk C, Hansel D (2001) Patterns of synchrony in neural networks with spike adaptation. Neural Comput 13:959–992PubMedCrossRefGoogle Scholar
  147. Wang XJ (2010) Neurophysiological and computational principles of cortical rhythms in cognition. Physiol Rev 90:1195–1268PubMedPubMedCentralCrossRefGoogle Scholar
  148. Wang Y, Chik DTW, Wang ZD (2000) Coherence resonance and noise-induced synchronization in globally coupled Hodgkin-Huxley neurons. Phys Rev E 61:740–746CrossRefGoogle Scholar
  149. Wang Q, Perc M, Duan Z, Chen G (2009) Synchronization transitions on scale-free neuronal networks due to finite information transmission delays. Phys Rev E 80:026206CrossRefGoogle Scholar
  150. Wang Q, Chen G, Perc M (2011a) Synchronous bursts on scale-free neuronal networks with attractive and repulsive coupling. PLoS ONE 6:e15851PubMedPubMedCentralCrossRefGoogle Scholar
  151. Wang QY, Murks A, Perc M, Lu QS (2011b) Taming desynchronized bursting with delays in the Macaque cortical network. Chinese Phys B 20:040504CrossRefGoogle Scholar
  152. Wang H, Wang Q, Lu Q, Zheng Y (2013) Equilibrium analysis and phase synchronization of two coupled HR neurons with gap junction. Cogn Neurodyn 7:121–131PubMedCrossRefGoogle Scholar
  153. Wiedemann C (2010) Neuronal networks: a hub of activity. Nat Rev Neurosci 11:74PubMedCrossRefGoogle Scholar
  154. Wittenberg GM, Wang SS (2006) Malleability of spike-timing-dependent plasticity at the CA3-CA1 synapse. J Neurosci 26:6610–6617PubMedCrossRefGoogle Scholar
  155. Womack MD, Khodakhah K (2002) Active contribution of dendrites to the tonic and trimodal patterns of activity in cerebellar Purkinje neurons. J Neurosci 22:10603–10612PubMedCrossRefGoogle Scholar
  156. Young MP (1993) The organization of neural systems in the primate cerebral cortex. Philos Trans R Soc 252:13–18Google Scholar
  157. Young MP, Scannell JW, Burns GA, Blakemore C (1994) Analysis of connectivity: neural systems in the cerebral cortex. Rev Neurosci 5:227–250PubMedCrossRefGoogle Scholar
  158. Yu H, Wang J, Deng B, Wei X, Wong YK, Chan WL, Tsang KM, Yu Z (2011) Chaotic phase synchronization in small-world networks of bursting neurons. Chaos 21:013127PubMedCrossRefGoogle Scholar
  159. Zhang LI, Tao HW, Holt CE, Harris WA, Poo M (1998) A critical window for cooperation and competition among developing retinorectal synapses. Nature 395:37–44PubMedCrossRefGoogle Scholar
  160. Zhou C, Kurths J (2002) Spatiotemporal coherence resonance of phase synchronization in weakly coupled chaotic oscillators. Phys Rev E 65:040101CrossRefGoogle Scholar
  161. Zhou C, Kurths J, Hu B (2001) Array-enhanced coherence resonance: nontrivial effects of heterogeneity and spatial independence of noise. Phys Rev Lett 87:098101PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Computational Neuroscience and Department of Science EducationDaegu National University of EducationDaeguKorea

Personalised recommendations