Skip to main content
Log in

Metabolisches Syndrom und Nierenkrankheiten

Metabolic syndrome and kidney diseases

  • Leitthema
  • Published:
Die Nephrologie Aims and scope

Zusammenfassung

Das Metabolische Syndrom (MetS) wurde erstmalig Ende der 80er-Jahre beschrieben und ist definiert durch das simultane Vorliegen von minimal 3 der folgenden 5 Komponenten: Adipositas, Dyslipoproteinämie, Glukoseintoleranz bzw. Diabetes mellitus Typ 2, arterielle Hypertonie. Durch die weltweite Verbesserung der Lebensumstände, vergesellschaftet mit einer Zunahme der Zivilisationskrankheiten wie Adipositas und Bluthochdruck, ist eine steigende Inzidenz des MetS seit Jahrzehnten zu beobachten. Das MetS ist ein Cluster kardiovaskulärer Risikofaktoren, welche die Entwicklung und Progression einer chronischen Niereninsuffizienz negativ beeinflussen. Durch zahlreiche pathophysiologische Veränderungen befindet sich der Metabolismus in einem proinflammatorischen Dauerzustand und auf zellulärer Ebene unter zunehmendem oxidativen Stress. Die Niere als das Organ mit zentraler Funktion zur Erhaltung der Körperhomöostase wird durch die physiologischen Veränderungen im Rahmen eines MetS in Mitleidenschaft gezogen. Eine vorzeitige Entwicklung einer chronischen Niereninsuffizienz bzw. eine Akzeleration und Progression dieser sind mit den einzelnen Komponenten des MetS assoziiert. Bioptisch können adipositasassoziierte Veränderungen wie die adipositasassoziierte Glomerulopathie (ORG), definiert als Glomerulomegalie mit oder ohne fokal-segmentale Glomerulosklerose, nachgewiesen werden. Die Therapie des MetS richtet sich in erster Linie nach den Leitlinien der Fachgesellschaften der einzelnen oben genannten Komponenten, welche individuell bei jedem einzelnen Patienten zu eruieren sind. Das Verständnis dieser komplexen Entität unter Berücksichtigung der Pathophysiologie und der damit verbundenen Beeinträchtigung des Zusammenspiels fast aller Organsysteme wuchs in den letzten Jahren rasant, v. a. da diese in weiten Teilen ungeklärt bleiben.

Abstract

Metabolic syndrome (MetS) was first described in the late 1980s and is defined by the simultaneous presence of at least three of the following five components: obesity, dyslipoproteinemia, glucose intolerance or diabetes mellitus type 2 and arterial hypertension. Due to the worldwide improvement of living conditions associated with an increase in diseases of civilization, such as obesity and hypertension, an increasing incidence of MetS has been observed for decades. The MetS is a cluster of cardiovascular risk factors that negatively influence the development and progression of chronic renal failure. Due to numerous pathophysiological changes, the metabolism is in a proinflammatory steady state and under increasing oxidative stress at the cellular level. The kidneys, as the organ with a central function to maintain body homeostasis, is affected by the physiological changes in the context of a MetS. A premature development of chronic renal failure or acceleration and progression of this is associated with the individual components of MetS. Bioptically, obesity-associated changes, such as obesity-related glomerulopathy (ORG), defined as glomerulomegaly with or without focal segmental glomerulosclerosis, can be detected. Treatment of MetS is primarily guided by professional society guidelines for each of the above components, which must be elicited individually for each patient. The understanding of this complex entity, taking the pathophysiology and the associated impairment of the interplay of almost all organ systems into account, has grown rapidly in recent years, especially as these remain largely unexplained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Reaven GM (1988) Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 37(12):1595–1607. https://doi.org/10.2337/diab.37.12.1595

    Article  CAS  PubMed  Google Scholar 

  2. Kaplan NM (1989) The deadly quartet. Upper-body obesity, glucose intolerance, hypertriglyceridemia, and hypertension. Arch Intern Med 149(7):1514–1520. https://doi.org/10.1001/archinte.149.7.1514

    Article  CAS  PubMed  Google Scholar 

  3. Alberti KG, Zimmet P, Shaw J, IDF Epidemiology Task Force Consensus Group (2005) The metabolic syndrome—a new worldwide definition. Lancet 366(9491):1059–1062. https://doi.org/10.1016/S0140-6736(05)67402-8

    Article  PubMed  Google Scholar 

  4. Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA et al (2009) Harmonizing the metabolic syndrome: a joint interim statement of the international diabetes federation task force on epidemiology and prevention; national heart, lung, and blood institute; American heart association; world heart federation; international atherosclerosis society; and international association for the study of obesity. Circulation 120(16):1640–1645. https://doi.org/10.1161/CIRCULATIONAHA.109.192644

    Article  CAS  PubMed  Google Scholar 

  5. Reisinger C, Nkeh-Chungag BN, Fredriksen PM, Goswami N (2021) The prevalence of pediatric metabolic syndrome—a critical look on the discrepancies between definitions and its clinical importance. Int J Obes (Lond) 45(1):12–24. https://doi.org/10.1038/s41366-020-00713-1

    Article  Google Scholar 

  6. Noubiap JJ, Nansseu JR, Lontchi-Yimagou E, Nkeck JR, Nyaga UF, Ngouo AT et al (2022) Global, regional, and country estimates of metabolic syndrome burden in children and adolescents in 2020: a systematic review and modelling analysis. Lancet Child Adolesc Health 6(3):158–170. https://doi.org/10.1016/S2352-4642(21)00374-6

    Article  PubMed  Google Scholar 

  7. Moebus S, Hanisch J, Bramlage P, Losch C, Hauner H, Wasem J et al (2008) Regional differences in the prevalence of the metabolic syndrome in primary care practices in Germany. Dtsch Arztebl Int 105(12):207–213. https://doi.org/10.3238/artzebl.2008.0207

    Article  PubMed  PubMed Central  Google Scholar 

  8. Schipf S, Alte D, Völzke H, Friedrich N, Haring R, Lohmann T et al (2010) Prävalenz des Metabolischen Syndroms in Deutschland: Ergebnisse der Study of Health in Pomerania (SHIP). Diabetol Stoffwechs 5(03):161–168

    Article  Google Scholar 

  9. Laguardia HA, Hamm LL, Chen J (2012) The metabolic syndrome and risk of chronic kidney disease: pathophysiology and intervention strategies. J Nutr Metab 2012:652608. https://doi.org/10.1155/2012/652608

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ciardullo S, Ballabeni C, Trevisan R, Perseghin G (2021) Metabolic syndrome, and not obesity, is associated with chronic kidney disease. Am J Nephrol 52(8):666–672. https://doi.org/10.1159/000518111

    Article  CAS  PubMed  Google Scholar 

  11. Singh AK, Kari JA (2013) Metabolic syndrome and chronic kidney disease. Curr Opin Nephrol Hypertens 22(2):198–203. https://doi.org/10.1097/MNH.0b013e32835dda78

    Article  CAS  PubMed  Google Scholar 

  12. Prasad GV (2014) Metabolic syndrome and chronic kidney disease: current status and future directions. World J Nephrol 3(4):210–219. https://doi.org/10.5527/wjn.v3.i4.210

    Article  PubMed  PubMed Central  Google Scholar 

  13. Yarnoff BO, Hoerger TJ, Shrestha SS, Simpson SK, Burrows NR, Anderson AH et al (2018) Modeling the impact of obesity on the lifetime risk of chronic kidney disease in the United States using updated estimates of GFR progression from the CRIC study. PLoS ONE 13(10):e205530. https://doi.org/10.1371/journal.pone.0205530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nehus E (2018) Obesity and chronic kidney disease. Curr Opin Pediatr 30(2):241–246. https://doi.org/10.1097/MOP.0000000000000586

    Article  PubMed  Google Scholar 

  15. Koh ES, Han DK, Kim MK, Kim ES, Lee MK, Nam GE et al (2021) Changes in metabolic syndrome status affect the incidence of end-stage renal disease in the general population: a nationwide cohort study. Sci Rep 11(1):1957. https://doi.org/10.1038/s41598-021-81396-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Stojsavljevic S, Gomercic Palcic M, Virovic Jukic L, Smircic Duvnjak L, Duvnjak M (2014) Adipokines and proinflammatory cytokines, the key mediators in the pathogenesis of nonalcoholic fatty liver disease. World J Gastroenterol 20(48):18070–18091. https://doi.org/10.3748/wjg.v20.i48.18070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ku E, Lee BJ, Wei J, Weir MR (2019) Hypertension in CKD: core curriculum 2019. Am J Kidney Dis 74(1):120–131. https://doi.org/10.1053/j.ajkd.2018.12.044

    Article  PubMed  Google Scholar 

  18. Jones DW, Kim JS, Andrew ME, Kim SJ, Hong YP (1994) Body mass index and blood pressure in Korean men and women: the Korean national blood pressure survey. J Hypertens 12(12):1433–1437. https://doi.org/10.1097/00004872-199412000-00018

    Article  CAS  PubMed  Google Scholar 

  19. Hall JE, do Carmo JM, da Silva AA, Wang Z, Hall ME (2015) Obesity-induced hypertension: interaction of neurohumoral and renal mechanisms. Circ Res 116(6):991–1006. https://doi.org/10.1161/CIRCRESAHA.116.305697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cortinovis M, Perico N, Ruggenenti P, Remuzzi A, Remuzzi G (2022) Glomerular hyperfiltration. Nat Rev Nephrol. https://doi.org/10.1038/s41581-022-00559-y

    Article  PubMed  Google Scholar 

  21. Hall JE, do Carmo JM, da Silva AA, Wang Z, Hall ME (2019) Obesity, kidney dysfunction and hypertension: mechanistic links. Nat Rev Nephrol 15(6):367–385. https://doi.org/10.1038/s41581-019-0145-4

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chagnac A, Weinstein T, Herman M, Hirsh J, Gafter U, Ori Y (2003) The effects of weight loss on renal function in patients with severe obesity. J Am Soc Nephrol 14(6):1480–1486. https://doi.org/10.1097/01.asn.0000068462.38661.89

    Article  PubMed  Google Scholar 

  23. Weisinger JR, Kempson RL, Eldridge FL, Swenson RS (1974) The nephrotic syndrome: a complication of massive obesity. Ann Intern Med 81(4):440–447. https://doi.org/10.7326/0003-4819-81-4-440

    Article  CAS  PubMed  Google Scholar 

  24. Zhang X, Lerman LO (2017) The metabolic syndrome and chronic kidney disease. Transl Res 183:14–25. https://doi.org/10.1016/j.trsl.2016.12.004

    Article  CAS  PubMed  Google Scholar 

  25. Kambham N, Markowitz GS, Valeri AM, Lin J, D’Agati VD (2001) Obesity-related glomerulopathy: an emerging epidemic. Kidney Int 59(4):1498–1509. https://doi.org/10.1046/j.1523-1755.2001.0590041498.x

    Article  CAS  PubMed  Google Scholar 

  26. Choung HG, Bomback AS, Stokes MB, Santoriello D, Campenot ES, Batal I et al (2019) The spectrum of kidney biopsy findings in patients with morbid obesity. Kidney Int 95(3):647–654. https://doi.org/10.1016/j.kint.2018.11.026

    Article  PubMed  Google Scholar 

  27. Garofalo C, Borrelli S, Minutolo R, Chiodini P, De Nicola L, Conte G (2017) A systematic review and meta-analysis suggests obesity predicts onset of chronic kidney disease in the general population. Kidney Int 91(5):1224–1235. https://doi.org/10.1016/j.kint.2016.12.013

    Article  PubMed  Google Scholar 

  28. Alonso-Galicia M, Dwyer TM, Herrera GA, Hall JE (1995) Increased hyaluronic acid in the inner renal medulla of obese dogs. Hypertension 25(4):888–892. https://doi.org/10.1161/01.hyp.25.4.888

    Article  CAS  PubMed  Google Scholar 

  29. Dwyer TM, Banks SA, Alonso-Galicia M, Cockrell K, Carroll JF, Bigler SA et al (2000) Distribution of renal medullary hyaluronan in lean and obese rabbits. Kidney Int 58(2):721–729. https://doi.org/10.1046/j.1523-1755.2000.00218.x

    Article  CAS  PubMed  Google Scholar 

  30. Unger RH, Scherer PE (2010) Gluttony, sloth and the metabolic syndrome: a roadmap to lipotoxicity. Trends Endocrinol Metab 21(6):345–352. https://doi.org/10.1016/j.tem.2010.01.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Adeosun SO, Gordon DM, Weeks MF, Moore KH, Hall JE, Hinds TD Jr. et al (2018) Loss of biliverdin reductase—a promotes lipid accumulation and lipotoxicity in mouse proximal tubule cells. Am J Physiol Renal Physiol 315(2):F323–F31. https://doi.org/10.1152/ajprenal.00495.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cabandugama PK, Gardner MJ, Sowers JR (2017) The renin angiotensin aldosterone system in obesity and hypertension: roles in the cardiorenal metabolic syndrome. Med Clin North Am 101(1):129–137. https://doi.org/10.1016/j.mcna.2016.08.009

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hall JE (2016) Renal dysfunction, rather than nonrenal vascular dysfunction, mediates salt-induced hypertension. Circulation 133(9):894–906. https://doi.org/10.1161/CIRCULATIONAHA.115.018526

    Article  PubMed  PubMed Central  Google Scholar 

  34. Whaley-Connell A, Sowers JR (2017) Obesity and kidney disease: from population to basic science and the search for new therapeutic targets. Kidney Int 92(2):313–323. https://doi.org/10.1016/j.kint.2016.12.034

    Article  CAS  PubMed  Google Scholar 

  35. Dinh Cat AN, Friederich-Persson M, White A, Touyz RM (2016) Adipocytes, aldosterone and obesity-related hypertension. J Mol Endocrinol 57(1):F7–F21. https://doi.org/10.1530/JME-16-0025

    Article  CAS  PubMed  Google Scholar 

  36. Alpert MA, Karthikeyan K, Abdullah O, Ghadban R (2018) Obesity and cardiac remodeling in adults: mechanisms and clinical implications. Prog Cardiovasc Dis 61(2):114–123. https://doi.org/10.1016/j.pcad.2018.07.012

    Article  PubMed  Google Scholar 

  37. Lavie CJ, Arena R, Alpert MA, Milani RV, Ventura HO (2018) Management of cardiovascular diseases in patients with obesity. Nat Rev Cardiol 15(1):45–56. https://doi.org/10.1038/nrcardio.2017.108

    Article  PubMed  Google Scholar 

  38. Scurt FG, Kuczera T, Mertens PR, Chatzikyrkou C (2019) The cardiorenal syndrome. Dtsch Med Wochenschr 144(13):910–916. https://doi.org/10.1055/a-0768-5899

    Article  PubMed  Google Scholar 

  39. Nowak KL, You Z, Gitomer B, Brosnahan G, Torres VE, Chapman AB et al (2018) Overweight and obesity are predictors of progression in early autosomal dominant polycystic kidney disease. J Am Soc Nephrol 29(2):571–578. https://doi.org/10.1681/ASN.2017070819

    Article  CAS  PubMed  Google Scholar 

  40. Ross WR, McGill JB (2006) Epidemiology of obesity and chronic kidney disease. Adv Chronic Kidney Dis 13(4):325–335. https://doi.org/10.1053/j.ackd.2006.07.012

    Article  PubMed  Google Scholar 

  41. Berthoux F, Mariat C, Maillard N (2013) Overweight/obesity revisited as a predictive risk factor in primary IgA nephropathy. Nephrol Dial Transplant 28(4):iv160–6. https://doi.org/10.1093/ndt/gft286

    Article  CAS  PubMed  Google Scholar 

  42. Tanaka M, Yamada S, Iwasaki Y, Sugishita T, Yonemoto S, Tsukamoto T et al (2009) Impact of obesity on IgA nephropathy: comparative ultrastructural study between obese and non-obese patients. Nephron Clin Pract 112(2):c71–8. https://doi.org/10.1159/000213084

    Article  CAS  PubMed  Google Scholar 

  43. Wu C, Wang AY, Li G, Wang L (2018) Association of high body mass index with development of interstitial fibrosis in patients with IgA nephropathy. BMC Nephrol 19(1):381. https://doi.org/10.1186/s12882-018-1164-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nowak KL, Murray K, You Z, Gitomer B, Brosnahan G, Abebe KZ et al (2021) Pain and obesity in autosomal dominant polycystic kidney disease: a post hoc analysis of the halt progression of polycystic kidney disease (HALT-PKD) studies. Kidney Med 3(4):536–545. https://doi.org/10.1016/j.xkme.2021.03.004

    Article  PubMed  PubMed Central  Google Scholar 

  45. Gorriz JL, Arroyo D, D’Marco L, Torra R, Tomas P, Puchades MJ et al (2021) Cardiovascular risk factors and the impact on prognosis in patients with chronic kidney disease secondary to autosomal dominant polycystic kidney disease. BMC Nephrol 22(1):110. https://doi.org/10.1186/s12882-021-02313-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zimmet P, Boyko EJ, Collier GR, de Courten M (1999) Etiology of the metabolic syndrome: potential role of insulin resistance, leptin resistance, and other players. Ann N Y Acad Sci 892:25–44. https://doi.org/10.1111/j.1749-6632.1999.tb07783.x

    Article  CAS  PubMed  Google Scholar 

  47. Muniyappa R, Sowers JR (2012) Endothelial insulin and IGF‑1 receptors: when yes means NO. Diabetes 61(9):2225–2227. https://doi.org/10.2337/db12-0654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pulakat L, DeMarco VG, Whaley-Connell A, Sowers JR (2011) The impact of overnutrition on insulin metabolic signaling in the heart and the kidney. Cardiorenal Med 1(2):102–112. https://doi.org/10.1159/000327140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mohan S, Reddick RL, Musi N, Horn DA, Yan B, Prihoda TJ et al (2008) Diabetic eNOS knockout mice develop distinct macro- and microvascular complications. Lab Invest 88(5):515–528. https://doi.org/10.1038/labinvest.2008.23

    Article  CAS  PubMed  Google Scholar 

  50. Taylor EN, Stampfer MJ, Curhan GC (2005) Obesity, weight gain, and the risk of kidney stones. JAMA 293(4):455–462. https://doi.org/10.1001/jama.293.4.455

    Article  CAS  PubMed  Google Scholar 

  51. Semins MJ, Shore AD, Makary MA, Magnuson T, Johns R, Matlaga BR (2010) The association of increasing body mass index and kidney stone disease. J Urol 183(2):571–575. https://doi.org/10.1016/j.juro.2009.09.085

    Article  PubMed  Google Scholar 

  52. Khan SR, Pearle MS, Robertson WG, Gambaro G, Canales BK, Doizi S et al (2016) Kidney stones. Nat Rev Dis Primers 2:16008. https://doi.org/10.1038/nrdp.2016.8

    Article  PubMed  PubMed Central  Google Scholar 

  53. Requarth JA, Burchard KW, Colacchio TA, Stukel TA, Mott LA, Greenberg ER et al (1995) Long-term morbidity following jejunoileal bypass. The continuing potential need for surgical reversal. Arch Surg 130(3):318–325. https://doi.org/10.1001/archsurg.1995.01430030088018

    Article  CAS  PubMed  Google Scholar 

  54. Lee TH, Chen JJ, Wu CY, Yang CW, Yang HY (2021) Hyperuricemia and progression of chronic kidney disease: a review from physiology and pathogenesis to the role of urate-lowering therapy. Diagnostics (Basel). https://doi.org/10.3390/diagnostics11091674

    Article  PubMed  PubMed Central  Google Scholar 

  55. Talbott JH, Terplan KL (1960) The kidney in gout. Medicine 39:405–467

    Article  CAS  Google Scholar 

  56. Jung SW, Kim SM, Kim YG, Lee SH, Moon JY (2020) Uric acid and inflammation in kidney disease. Am J Physiol Renal Physiol 318(6):F1327–F40. https://doi.org/10.1152/ajprenal.00272.2019

    Article  CAS  PubMed  Google Scholar 

  57. Sellmayr M, Hernandez Petzsche MR, Ma Q, Kruger N, Liapis H, Brink A et al (2020) Only hyperuricemia with crystalluria, but not asymptomatic hyperuricemia, drives progression of chronic kidney disease. J Am Soc Nephrol 31(12):2773–2792. https://doi.org/10.1681/ASN.2020040523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ramaswamy K, Shah O (2014) Metabolic syndrome and nephrolithiasis. Transl Androl Urol 3(3):285–295. https://doi.org/10.3978/j.issn.2223-4683.2014.06.03

    Article  PubMed  PubMed Central  Google Scholar 

  59. Abate N, Chandalia M, Cabo-Chan AV Jr., Moe OW, Sakhaee K (2004) The metabolic syndrome and uric acid nephrolithiasis: novel features of renal manifestation of insulin resistance. Kidney Int 65(2):386–392. https://doi.org/10.1111/j.1523-1755.2004.00386.x

    Article  CAS  PubMed  Google Scholar 

  60. Daudon M, Lacour B, Jungers P (2005) High prevalence of uric acid calculi in diabetic stone formers. Nephrol Dial Transplant 20(2):468–469. https://doi.org/10.1093/ndt/gfh594

    Article  CAS  PubMed  Google Scholar 

  61. Demoulin N, Aydin S, Gillion V, Morelle J, Jadoul M (2021) Pathophysiology and management of hyperoxaluria and oxalate nephropathy: a review. Am J Kidney Dis. https://doi.org/10.1053/j.ajkd.2021.07.018

    Article  PubMed  Google Scholar 

  62. Sakhaee K, Maalouf NM, Sinnott B (2012) Clinical review. Kidney stones 2012: pathogenesis, diagnosis, and management. J Clin Endocrinol Metab 97(6):1847–1860. https://doi.org/10.1210/jc.2011-3492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nasr SH, D’Agati VD, Said SM, Stokes MB, Largoza MV, Radhakrishnan J et al (2008) Oxalate nephropathy complicating Roux-en‑Y gastric bypass: an underrecognized cause of irreversible renal failure. Clin J Am Soc Nephrol 3(6):1676–1683. https://doi.org/10.2215/CJN.02940608

    Article  PubMed  PubMed Central  Google Scholar 

  64. Ligon CB, Hummers LK, McMahan ZH (2015) Oxalate nephropathy in systemic sclerosis: case series and review of the literature. Semin Arthritis Rheum 45(3):315–320. https://doi.org/10.1016/j.semarthrit.2015.06.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Canfora EE, Meex RCR, Venema K, Blaak EE (2019) Gut microbial metabolites in obesity, NAFLD and T2DM. Nat Rev Endocrinol 15(5):261–273. https://doi.org/10.1038/s41574-019-0156-z

    Article  CAS  PubMed  Google Scholar 

  66. Santisteban MM, Qi Y, Zubcevic J, Kim S, Yang T, Shenoy V et al (2017) Hypertension-linked pathophysiological alterations in the gut. Circ Res 120(2):312–323. https://doi.org/10.1161/CIRCRESAHA.116.309006

    Article  CAS  PubMed  Google Scholar 

  67. Wilck N, Matus MG, Kearney SM, Olesen SW, Forslund K, Bartolomaeus H et al (2017) Salt-responsive gut commensal modulates TH17 axis and disease. Nature 551(7682):585–589. https://doi.org/10.1038/nature24628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yang T, Richards EM, Pepine CJ, Raizada MK (2018) The gut microbiota and the brain-gut-kidney axis in hypertension and chronic kidney disease. Nat Rev Nephrol 14(7):442–456. https://doi.org/10.1038/s41581-018-0018-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Eslam M, Newsome PN, Sarin SK, Anstee QM, Targher G, Romero-Gomez M et al (2020) A new definition for metabolic dysfunction-associated fatty liver disease: an international expert consensus statement. J Hepatol 73(1):202–209. https://doi.org/10.1016/j.jhep.2020.03.039

    Article  PubMed  Google Scholar 

  70. Godoy-Matos AF, Silva Junior WS, Valerio CM (2020) NAFLD as a continuum: from obesity to metabolic syndrome and diabetes. Diabetol Metab Syndr 12:60. https://doi.org/10.1186/s13098-020-00570-y

    Article  PubMed  PubMed Central  Google Scholar 

  71. Leoni S, Tovoli F, Napoli L, Serio I, Ferri S, Bolondi L (2018) Current guidelines for the management of non-alcoholic fatty liver disease: a systematic review with comparative analysis. World J Gastroenterol 24(30):3361–3373. https://doi.org/10.3748/wjg.v24.i30.3361

    Article  PubMed  PubMed Central  Google Scholar 

  72. Jinjuvadia R, Antaki F, Lohia P, Liangpunsakul S (2017) The association between nonalcoholic fatty liver disease and metabolic abnormalities in the United States population. J Clin Gastroenterol 51(2):160–166. https://doi.org/10.1097/MCG.0000000000000666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Scurt FG, Bose K, Canbay A, Mertens PR, Chatzikyrkou C (2021) Chronic kidney injury in patients with liver diseases—reappraising pathophysiology and treatment options. Z Gastroenterol 59(6):560–579. https://doi.org/10.1055/a-1402-1502

    Article  PubMed  Google Scholar 

  74. Xia MF, Bian H, Gao X (2019) NAFLD and diabetes: two sides of the same coin? Rationale for gene-based personalized NAFLD treatment. Front Pharmacol 10:877. https://doi.org/10.3389/fphar.2019.00877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Targher G, Bertolini L, Rodella S, Lippi G, Zoppini G, Chonchol M (2010) Relationship between kidney function and liver histology in subjects with nonalcoholic steatohepatitis. Clin J Am Soc Nephrol 5(12):2166–2171. https://doi.org/10.2215/CJN.05050610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Tang SC (2010) Diabetic nephropathy: a global and growing threat. Hong Kong Med J 16(4):244–245

    CAS  PubMed  Google Scholar 

  77. Espinel E, Agraz I, Ibernon M, Ramos N, Fort J, Seron D (2015) Renal biopsy in type 2 diabetic patients. J Clin Med 4(5):998–1009. https://doi.org/10.3390/jcm4050998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Krolewski AS (2015) Progressive renal decline: the new paradigm of diabetic nephropathy in type 1 diabetes. Diabetes Care 38(6):954–962. https://doi.org/10.2337/dc15-0184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Scurt FG, Bose K, Canbay A, Mertens PR, Chatzikyrkou C (2020) Paradigm shift in understanding acute kidney injury in patients with chronic liver disease: from pathophysiology to defining disease entities. Z Gastroenterol 58(3):254–266. https://doi.org/10.1055/a-1088-1582

    Article  PubMed  Google Scholar 

  80. Mikolasevic I, Milic S, Orlic L, Poropat G, Jakopcic I, Franjic N et al (2016) Metabolic syndrome and acute pancreatitis. Eur J Intern Med 32:79–83. https://doi.org/10.1016/j.ejim.2016.04.004

    Article  CAS  PubMed  Google Scholar 

  81. Scurt FG, Bose K, Canbay A, Mertens PR, Chatzikyrkou C (2020) Acute kidney injury following acute pancreatitis (AP-AKI): definition, pathophysiology, diagnosis and therapy. Z Gastroenterol 58(12):1241–1266. https://doi.org/10.1055/a-1255-3413

    Article  CAS  PubMed  Google Scholar 

  82. Byrne CD, Targher G (2020) NAFLD as a driver of chronic kidney disease. J Hepatol 72(4):785–801. https://doi.org/10.1016/j.jhep.2020.01.013

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maximilian J. Ganz or Florian G. Scurt.

Ethics declarations

Interessenkonflikt

M.J. Ganz, S.T. Bender, C. Gross, K. Bose, P.R. Mertens und F.G. Scurt geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

Uwe Heemann, München

Jens Lutz, Koblenz

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganz, M.J., Bender, S.T., Gross, C. et al. Metabolisches Syndrom und Nierenkrankheiten. Nephrologie 17, 291–303 (2022). https://doi.org/10.1007/s11560-022-00595-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11560-022-00595-6

Schlüsselwörter

Keywords

Navigation