Diversity and distribution of arbuscular mycorrhizal fungi along a land use gradient in Terceira Island (Azores)

Abstract

More knowledge of community composition of arbuscular mycorrhizal (AM) fungi in ecosystems in relation to habitat type and land use intensity is needed. We studied AMF in 106 soil samples from pristine natural forests and a gradient of disturbance including semi-natural and intensively managed pastures of Terceira, Azores. Altogether, 42 spore morphotypes were detected from eight AMF families, revealing different fungal community structures among the three land use types. Spore density was highest in native forests and lowest in intensively managed pastures, but fungal richness was highest in semi-natural pastures and lowest in native forests. No significant difference occurred between intensively managed pastures and native forests. Members of Acaulosporaceae and Glomeraceae were dominant in native forests, while fungi from Gigasporaceae and Claroideoglomeraceae were most abundant in semi-natural and intensively managed pastures respectively, indicating family-based ecological preferences. Rarefaction analysis revealed that pastures supported more diverse AMF communities than native forests, because in high elevation pristine forests, a few rare species dominate. It is therefore likely that more species would be found with increasing survey effort. Further research is needed to clarify the influence of land use type on AMF diversity and distribution in remote islands, and the role of native AMF on soil ecosystem processes and the spread of exotic plants.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Alcover JA, Pieper H, Pereira F et al (2015) Five new extinct species of rails (Aves: Gruiformes: Rallidae) from the Macaronesian Islands (North Atlantic Ocean). Zootaxa 4057:151–190. https://doi.org/10.11646/zootaxa.4057.2.1

    Article  Google Scholar 

  2. Alguacil MM, Lumini E, Roldan A et al (2008) The impact of tillage practices on arbuscular mycorrhizal fungal diversity in subtropical crops. Ecol Appl 18:527–536. https://doi.org/10.1890/07-0521.1

    CAS  Article  Google Scholar 

  3. Alguacil MM, Torrecillas E, García-Orenes F, Roldán A (2014) Changes in the composition and diversity of AMF communities mediated by management practices in a Mediterranean soil are related with increases in soil biological activity. Soil Biol Biochem 76:34–44. https://doi.org/10.1016/j.soilbio.2014.05.002

    CAS  Article  Google Scholar 

  4. Álvarez-Sánchez J, Johnson NC, Antoninka A et al (2012) Large-scale diversity patterns in spore communities of arbuscular mycorrhizal fungi. In: Pagano M (ed) Mycorrhiza: occurrence in natural and restored environments. Nova Science Publishers, New York, pp 29–47

    Google Scholar 

  5. Ávila SP, Melo C, Berning B et al (2016) Persististrombus coronatus (Mollusca: Strombidae) in the lower Pliocene of Santa Maria Island (Azores, NE Atlantic): paleoecology, paleoclimatology and paleobiogeographic implications. Palaeogeogr Palaeocl 441:912–923. https://doi.org/10.1016/j.palaeo.2015.10.043

    Article  Google Scholar 

  6. Avio L, Castaldini M, Fabiani A et al (2013) Impact of nitrogen fertilization and soil tillage on arbuscular mycorrhizal fungal communities in a Mediterranean agroecosystem. Soil Biol Biochem 67:285–294. https://doi.org/10.1016/j.soilbio.2013.09.005

    CAS  Article  Google Scholar 

  7. Bainard LD, Bainard JD, Hamel C et al (2014) Spatial and temporal structuring of arbuscular mycorrhizal communities is differentially influenced by abiotic factors and host crop in a semi-arid prairie agroecosystem. FEMS Microbiol Ecol 88:333–344. https://doi.org/10.1111/1574-6941.12300

    CAS  Article  Google Scholar 

  8. Barea JM, Palenzuela J, Cornejo P et al (2011) Ecological and functional roles of mycorrhizas in semi-arid ecosystems of Southeast Spain. J Arid Environ 75:1292–1301. https://doi.org/10.1016/j.jaridenv.2011.06.001

    Article  Google Scholar 

  9. Barea JM, Pozo MJ, Azcón R, Azcón-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56:1761–1778. https://doi.org/10.1093/jxb/eri197

    CAS  Article  Google Scholar 

  10. Belay Z, Vestberg MV, Assefa F (2015) Diversity and abundance of arbuscular mycorrhizal fungi across different land use types in a humid low land area of Ethiopia. Trop Subtrop Agroecosystems 18:47–69

    Google Scholar 

  11. Birhane E, Fatumah N, Gidey K et al (2018) Vegetation cover density and disturbance affected arbuscular mycorrhiza fungi spore density and root colonization in a dry Afromontane forest, northern Ethiopia. J For Res 29:675–686. https://doi.org/10.1007/s11676-017-0493-5

    CAS  Article  Google Scholar 

  12. Borges PAV (1997) Pasture arthropod community structure in Azorean islands of different geological age. Ph.D. Dissertation, Imperial College, University of London, London

  13. Borriello R, Lumini E, Girlanda M et al (2012) Effects of different management practices on arbuscular mycorrhizal fungal diversity in maize fields by a molecular approach. Biol Fertil Soils 48:911–922. https://doi.org/10.1007/s00374-012-0683-4

    Article  Google Scholar 

  14. Brito I, Goss MJ, de Carvalho M et al (2012) Impact of tillage system on arbuscular mycorrhiza fungal communities in the soil under Mediterranean conditions. Soil Tillage Res 121:63–67. https://doi.org/10.1016/j.still.2012.01.012

    Article  Google Scholar 

  15. Brundrett MC (2009) Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320:37–77. https://doi.org/10.1007/s11104-008-9877-9

    CAS  Article  Google Scholar 

  16. Brundrett MC, Abbott LK, Jasper DA (1999) Glomalean mycorrhizal fungi from tropical Australia. I. Comparison of the effectiveness and specificity of different isolation procedures. Mycorrhiza 8:305–314. https://doi.org/10.1007/s005720050251

    Article  Google Scholar 

  17. Cai X-B, Peng Y-L, Yang M-N, et al (2014) Grassland degradation decrease the diversity of arbuscular mycorrhizal fungi species in Tibet Plateau. Not Bot Horti Agrobot Cluj-Napoca 42. doi: https://doi.org/10.15835/nbha.42.2.9458

  18. Cardoso P, Lobo JM, Aranda SC et al (2009) A spatial scale assessment of habitat effects on arthropod communities of an oceanic island. Acta Oecol 35:90–597. https://doi.org/10.1016/j.actao.2009.05.005

    Article  Google Scholar 

  19. Castillo CG, Rubio R, Rouanet JL, Borie F (2006) Early effects of tillage and crop rotation on arbuscular mycorrhizal fungal propagules in an Ultisol. Biol Fertil Soils 43:83–92. https://doi.org/10.1007/s00374-005-0067-0

    Article  Google Scholar 

  20. Chen K, Weixin L, Guo S et al (2012) Diversity of arbuscular mycorrhizal fungi in continuous cropping soils used for pepper production. Afr J Microbiol Res 6:2469–2974. https://doi.org/10.5897/AJMR11.1532

    CAS  Article  Google Scholar 

  21. Chen M, Arato M, Borghi L, et al (2018) Beneficial services of arbuscular mycorrhizal fungi—from ecology to application. Front Plant Sci 9:1270 https://doi.org/10.3389/fpls.2018.01270

  22. Chitarra W, Pagliarani C, Maserti B et al (2016) Insights on the impact of arbuscular mycorrhizal symbiosis on tomato tolerance to water stress. Plant Physiol 171:1009–1023. https://doi.org/10.1104/pp.16.00307

    Article  Google Scholar 

  23. Ciccolini V, Ercoli L, Davison J et al (2016) Land-use intensity and host plant simultaneously shape the composition of arbuscular mycorrhizal fungal communities in a Mediterranean drained peatland. FEMS Microbiol Ecol:92. https://doi.org/10.1093/femsec/fiw186

  24. Clarke KR, Warwick RM (2001) Change in marine communities: an approach to statistical analysis and interpretation, second edn. PRIMER-E, Plymouth, UK

  25. Colwell RK (2013) EstimateS: statistical estimation of species richness and shared species from samples. Version 9. User’s Guide and application published at: http://purl.oclc.org/estimates

  26. Dai M, Bainard LD, Hamel C et al (2013) Impact of land use on arbuscular mycorrhizal fungal communities in rural Canada. Appl Environ Microbiol 79:6719–6729. https://doi.org/10.1128/AEM.01333-13

    CAS  Article  Google Scholar 

  27. Davison J, Moora M, Öpik M et al (2015) Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science 349:970–973. https://doi.org/10.1126/science.aab1161

    CAS  Article  Google Scholar 

  28. De Deyn GB, Quirk H, Bardgett RD (2011) Plant species richness, identity and productivity differentially influence key groups of microbes in grassland soils of contrasting fertility. Biol Lett 7:75–78. https://doi.org/10.1098/rsbl.2010.0575

    Article  Google Scholar 

  29. Dias E (1996) Ecologia e sintaxonomia das florestas naturais (Ph.D. Dissertation). University of the Azores, Angra do Heroísmo

  30. Dobo B, Asefa F, Asfaw Z (2016) Diversity of arbuscular mycorrhizal fungi of different plant species grown in three land use types in Wensho and Shebidino districts of Sidama in southern Ethiopia. Adv Biosci Bioeng 4:25. https://doi.org/10.11648/j.abb.20160404.11

    Article  Google Scholar 

  31. Egerton-Warburton LM, Johnson NC, Allen EB (2007) Mycorrhizal community dynamics following nitrogen fertilization: a cross-site test in five grasslands. Ecol Monogr 77:527–544

    Article  Google Scholar 

  32. Elias RB, Gil A, Silva L et al (2016) Natural zonal vegetation of the Azores Islands: characterization and potential distribution. Phytocoenologia 46:107–123. https://doi.org/10.1127/phyto/2016/0132

    Article  Google Scholar 

  33. Faggioli VS, Cabello MN, Grilli G et al (2019) Root colonizing and soil borne communities of arbuscular mycorrhizal fungi differ among soybean fields with contrasting historical land use. Agric Ecosyst Environ 269:174–182. https://doi.org/10.1016/j.agee.2018.10.002

    Article  Google Scholar 

  34. Gaspar C, Borges PA, Gaston KJ (2008) Diversity and distribution of arthropods in native forests of the Azores archipelago. Arquip Life Mar Sci 25:01–30

    Google Scholar 

  35. Gerz M, Bueno CG, Zobel M et al (2016) Plant community mycorrhization in temperate forests and grasslands: relations with edaphic properties and plant diversity. J Veg Sci 27:89–99. https://doi.org/10.1111/jvs.12338

    Article  Google Scholar 

  36. Göhre V, Paszkowski U (2006) Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 223:1115–1122. https://doi.org/10.1007/s00425-006-0225-0

    CAS  Article  Google Scholar 

  37. González-Chávez MC, Carrillo-González R, Wright SF, Nichols KA (2004) The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environ Pollut 130:317–323. https://doi.org/10.1016/j.envpol.2004.01.004

    CAS  Article  Google Scholar 

  38. Hartmann M, Frey B, Mayer J et al (2015) Distinct soil microbial diversity under long-term organic and conventional farming. ISME J 9:1177–1194. https://doi.org/10.1038/ismej.2014.210

    Article  Google Scholar 

  39. Hijri I, Sýkorová Z, Oehl F et al (2006) Communities of arbuscular mycorrhizal fungi in arable soils are not necessarily low in diversity. Mol Ecol 15:2277–2289. https://doi.org/10.1111/j.1365-294X.2006.02921.x

    CAS  Article  Google Scholar 

  40. Hortal J, Borges PAV, Gaspar C (2006) Evaluating the performance of species richness estimators: sensitivity to sample grain size. J Anim Ecol 75:274–287. https://doi.org/10.1111/j.1365-2656.2006.01048.x

    Article  Google Scholar 

  41. Hu J, Lin X, Wang J et al (2009) Arbuscular mycorrhizal fungus enhances crop yield and P-uptake of maize (Zea mays L.): a field case study on a sandy loam soil as affected by long-term P-deficiency fertilization. Soil Biol Biochem 41:2460–2465. https://doi.org/10.1016/j.soilbio.2009.09.002

    CAS  Article  Google Scholar 

  42. IBM Corp (2013) IBM SPSS Statistics for Windows, Version 22.0. IBM Corp, Armonk, NY

  43. Jamshidi S, Behm JE, Eveillard D et al (2015) Using hybrid automata modelling to study phenotypic plasticity and allocation strategies in the plant mycorrhizal mutualism. Ecol Model 311:11–19. https://doi.org/10.1016/j.ecolmodel.2015.04.021

    CAS  Article  Google Scholar 

  44. Jansa J, Mozafar A, Anken T et al (2002) Diversity and structure of AMF communities as affected by tillage in a temperate soil. Mycorrhiza 12:225–234. https://doi.org/10.1007/s00572-002-0163-z

    CAS  Article  Google Scholar 

  45. Jansa J, Mozafar A, Kuhn G et al (2003) Soil tillage affects the community structure of mycorrhizal fungi in maize roots. Ecol Appl 13:1164–1176

    Article  Google Scholar 

  46. Jansa J, Wiemken A, Frossard E (2006) The effects of agricultural practices on arbuscular mycorrhizal fungi. Geol Soc Lond Spec Publ 266:89–115. https://doi.org/10.1144/GSL.SP.2006.266.01.08

    Article  Google Scholar 

  47. Jeffries P, Gianinazzi S, Perotto S et al (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soils 37:1–16

    Article  Google Scholar 

  48. Johnson NC, Tilman D, Wedin D (1992) Plant and soil controls on mycorrhizal fungal communities. Ecology 73:2034–2042. https://doi.org/10.2307/1941453

    Article  Google Scholar 

  49. Kawahara A, Ezawa T (2013) Characterization of arbuscular mycorrhizal fungal communities with respect to zonal vegetation in a coastal dune ecosystem. Oecologia 173:533–543. https://doi.org/10.1007/s00442-013-2622-y

    Article  Google Scholar 

  50. Kim Y-C, Gao C, Zheng Y et al (2015) Arbuscular mycorrhizal fungal community response to warming and nitrogen addition in a semiarid steppe ecosystem. Mycorrhiza 25:267–276. https://doi.org/10.1007/s00572-014-0608-1

    CAS  Article  Google Scholar 

  51. Kivlin SN, Hawkes CV, Treseder KK (2011) Global diversity and distribution of arbuscular mycorrhizal fungi. Soil Biol Biochem 43:2294–2303. https://doi.org/10.1016/j.soilbio.2011.07.012

    CAS  Article  Google Scholar 

  52. Köhl L, Oehl F, van der Heijden MGA (2014) Agricultural practices indirectly influence plant productivity and ecosystem services through effects on soil biota. Ecol Appl 24:1842–1853. https://doi.org/10.1890/13-1821.1

    Article  Google Scholar 

  53. König S, Wubet T, Dormann CF et al (2010) TaqMan real-time PCR assays to assess arbuscular mycorrhizal responses to field manipulation of grassland biodiversity: effects of soil characteristics, plant species richness, and functional traits. Appl Environ Microbiol 76:3765–3775. https://doi.org/10.1128/AEM.02951-09

    CAS  Article  Google Scholar 

  54. Lazarevic B, Losak T, Manschadi AM (2018) Arbuscular mycorrhizae modify winter wheat root morphology and alleviate phosphorus deficit stress. Plant Soil Environ 64(2018):47–52. https://doi.org/10.17221/678/2017-PSE

    CAS  Article  Google Scholar 

  55. Lekberg Y, Waller LP (2016) What drives differences in arbuscular mycorrhizal fungal communities among plant species? Fungal Ecol 24:135–138. https://doi.org/10.1016/j.funeco.2016.05.012

    Article  Google Scholar 

  56. Li L-F, Zhang Y, Zhao Z-W (2007) Arbuscular mycorrhizal colonization and spore density across different land-use types in a hot and arid ecosystem, Southwest China. J Plant Nutr Soil Sci 170:419–425. https://doi.org/10.1002/jpln.200625034

    CAS  Article  Google Scholar 

  57. Li X, Gai J, Cai X, et al (2013) Molecular diversity of arbuscular mycorrhizal fungi associated with two co-occurring perennial plant species on a Tibetan altitudinal gradient. Mycorrhiza 24:. doi: https://doi.org/10.1007/s00572-013-0518-7

  58. Lin X, Feng Y, Zhang H et al (2012) Long-term balanced fertilization decreases arbuscular mycorrhizal fungal diversity in an arable soil in North China revealed by 454 pyrosequencing. Environ Sci Technol 46:5764–5771. https://doi.org/10.1021/es3001695

    CAS  Article  Google Scholar 

  59. Lumini E, Orgiazzi A, Borriello R et al (2010) Disclosing arbuscular mycorrhizal fungal biodiversity in soil through a land-use gradient using a pyrosequencing approach. Environ Microbiol. https://doi.org/10.1111/j.1462-2920.2009.02099.x

  60. Mafaziya F, Madawala S (2015) Abundance, richness and root colonization of arbuscular mycorrhizal fungi in natural and semi-natural land use types at upper Hantana. Ceylon J Sci Biol Sci 44:25. https://doi.org/10.4038/cjsbs.v44i1.7338

    Article  Google Scholar 

  61. Magurran AE (2004) Measuring biological diversity. Blackwell Science, Oxford

    Google Scholar 

  62. Martins AM (1993) The Azores-westernmost Europe: where evolution can be caught red-handed. Mus Mun Funchal 2:181–198

    Google Scholar 

  63. Mathimaran N, Ruh R, Jama B et al (2007) Impact of agricultural management on arbuscular mycorrhizal fungal communities in Kenyan ferralsol. Agric Ecosyst Environ 119:22–32. https://doi.org/10.1016/j.agee.2006.06.004

    Article  Google Scholar 

  64. Melo CD, Luna S, Krüger C et al (2017) Arbuscular mycorrhizal fungal community composition associated with Juniperus brevifolia in native Azorean forest. Acta Oecol 79:48–61. https://doi.org/10.1016/j.actao.2016.12.006

    Article  Google Scholar 

  65. Melo CD, Walker C, Krüger C et al (2019) Environmental factors driving arbuscular mycorrhizal fungal communities associated with endemic woody plant Picconia azorica on native forest of Azores. Ann Microbiol 69:1309–1327. https://doi.org/10.1007/s13213-019-01535-x

    CAS  Article  Google Scholar 

  66. Melo CD, Walker C, Rodríguez-Echeverría S et al (2014) Species composition of arbuscular mycorrhizal fungi differ in semi-natural and intensively managed pastures in an isolated oceanic island (Terceira, Azores). Symbiosis 64:73–85. https://doi.org/10.1007/s13199-014-0303-1

    Article  Google Scholar 

  67. Minggui G, Tang M, Zhang Q et al (2012) Effects of climatic and edaphic factors on arbuscular mycorrhizal fungi in the rhizosphere of Hippophae rhamnoides in the Loess Plateau, China. Acta Ecol Sin 32:62–67. https://doi.org/10.1016/j.chnaes.2011.12.005

    Article  Google Scholar 

  68. Minitab I (2000) Minitab: release 13 for Windows. Minitab Inc., State College, PA

    Google Scholar 

  69. Moora M, Davison J, Öpik M et al (2014) Anthropogenic land use shapes the composition and phylogenetic structure of soil arbuscular mycorrhizal fungal communities. FEMS Microbiol Ecol 90:609–621. https://doi.org/10.1111/1574-6941.12420

    CAS  Article  Google Scholar 

  70. Ndoye F, Kane A, Mangaptché N, et al (2012) Changes in land use system and environmental factors affect arbuscular mycorrhizal fungal density and diversity, and enzyme activities in rhizospheric soils of Acacia senegal (L.) Willd. In: Int. Sch. Res. Not. https://www.hindawi.com/journals/isrn/2012/563191/.

  71. Newbold T, Hudson LN, Hill SL et al (2015) Global effects of land use on local terrestrial biodiversity. Nature 520:45–50. https://doi.org/10.1038/nature14324

    CAS  Article  Google Scholar 

  72. Oehl F, Laczko E, Bogenrieder A et al (2010) Soil type and land use intensity determine the composition of arbuscular mycorrhizal fungal communities. Soil Biol Biochem 42:724–738. https://doi.org/10.1016/j.soilbio.2010.01.006

    CAS  Article  Google Scholar 

  73. Oehl F, Sieverding E, Ineichen K et al (2005) Community structure of arbuscular mycorrhizal fungi at different soil depths in extensively and intensively managed agroecosystems. New Phytol 165:273–283. https://doi.org/10.1111/j.1469-8137.2004.01235.x

    Article  Google Scholar 

  74. Olden JD (2006) Biotic homogenization: a new research agenda for conservation biogeography. J Biogeogr 33:2027–2039. https://doi.org/10.1111/j.1365-2699.2006.01572.x

    Article  Google Scholar 

  75. Öpik M, Moora M, Liira J, Zobel M (2006) Composition of root-colonizing arbuscular mycorrhizal fungal communities in different ecosystems around the globe: arbuscular mycorrhizal fungal communities around the globe. J Ecol 94:778–790. https://doi.org/10.1111/j.1365-2745.2006.01136.x

    Article  Google Scholar 

  76. Öpik M, Vanatoa A, Vanatoa E et al (2010) The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol 188:223–241. https://doi.org/10.1111/j.1469-8137.2010.03334.x

    CAS  Article  Google Scholar 

  77. Pozo MJ, Azcón-Aguilar C (2007) Unraveling mycorrhiza-induced resistance. Curr Opin Plant Biol 10:393–398. https://doi.org/10.1016/j.pbi.2007.05.004

    CAS  Article  Google Scholar 

  78. QGIS Development Team (2016) QGIS geographic information system. Open Source Geospatial Foundation Project. Retrieved from http://qgis.osgeo.org

  79. Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41–53. https://doi.org/10.1111/j.1469-8137.2006.01750.x

    CAS  Article  Google Scholar 

  80. Rodríguez-Echeverría S, Teixeira H, Correia M et al (2017) Arbuscular mycorrhizal fungi communities from tropical Africa reveal strong ecological structure. New Phytol 213:380–390. https://doi.org/10.1111/nph.14122

    Article  Google Scholar 

  81. Schmidt MH, Thies C, Nentwig W, Tscharntke T (2008) Contrasting responses of arable spiders to the landscape matrix at different spatial scales. J Biogeogr 35:157–166. https://doi.org/10.1111/j.1365-2699.2007.01774.x

    Article  Google Scholar 

  82. Schneider S, Hartmann M, Enkerli J, Widmer F (2010) Fungal community structure in soils of conventional and organic farming systems. Fungal Ecol 3:215–224. https://doi.org/10.1016/j.funeco.2009.10.006

    Article  Google Scholar 

  83. Schnoor TK, Lekberg Y, Rosendahl S, Olsson PA (2011) Mechanical soil disturbance as a determinant of arbuscular mycorrhizal fungal communities in semi-natural grassland. Mycorrhiza 21:211–220. https://doi.org/10.1007/s00572-010-0325-3

    Article  Google Scholar 

  84. Seaby RMH, Henderson PA, Prendergast JR (2004) Community Analysis Package. Version 4.01. Pisces Conservation Ltd., http://www.pisces-conservation.com

  85. Senés-Guerrero C, Schüßler A (2016) A conserved arbuscular mycorrhizal fungal core-species community colonizes potato roots in the Andes. Fungal Divers 77:317–333. https://doi.org/10.1007/s13225-015-0328-7

    Article  Google Scholar 

  86. Shi Z, Wang F, Zhang K, Chen Y (2014) Diversity and distribution of arbuscular mycorrhizal fungi along altitudinal gradients in Mount Taibai of the Qinling Mountains. Can J Microbiol 60:811–818. https://doi.org/10.1139/cjm-2014-0416

    CAS  Article  Google Scholar 

  87. Smith SE, Facelli E, Pope S, Andrew Smith F (2010) Plant performance in stressful environments: interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant Soil 326:3–20. https://doi.org/10.1007/s11104-009-9981-5

    CAS  Article  Google Scholar 

  88. Solís-Rodríguez URJ, Ramos-Zapata JA, Hernández-Cuevas L et al (2020) Arbuscular mycorrhizal fungi diversity and distribution in tropical low flooding forest in Mexico. Mycol Prog 19:195–204. https://doi.org/10.1007/s11557-019-01550-x

    Article  Google Scholar 

  89. Steffan-Dewenter I, Nzenberg UM, Rger CB et al (2002) Scale-dependent effects of landscape context on three pollinator guilds. Ecology 83:1421–1432

    Article  Google Scholar 

  90. Sun X, Su Y, Zhang Y et al (2013) Diversity of arbuscular mycorrhizal fungal spore communities and its relations to plants under increased temperature and precipitation in a natural grassland. Chin Sci Bull 58:4109–4119. https://doi.org/10.1007/s11434-013-5961-5

    CAS  Article  Google Scholar 

  91. Terzopoulou S, Rigal F, Whittaker RJ et al (2015) Drivers of extinction: the case of Azorean beetles. Biol Lett 11:1–4. https://doi.org/10.1098/rsbl.2015.0273

    CAS  Article  Google Scholar 

  92. Triantis KA, Borges PAV, Ladle RJ et al (2010) Extinction debt on oceanic islands. Ecography 33:–285, 294. https://doi.org/10.1111/j.1600-0587.2010.06203.x

  93. Turrini A, Giovannetti M (2012) Arbuscular mycorrhizal fungi in national parks, nature reserves and protected areas worldwide: a strategic perspective for their in situ conservation. Mycorrhiza 22:81–97. https://doi.org/10.1007/s00572-011-0419-6

    Article  Google Scholar 

  94. van der Gast CJ, Gosling P, Tiwari B, Bending GD (2011) Spatial scaling of arbuscular mycorrhizal fungal diversity is affected by farming practice. Environ Microbiol 13:241–249. https://doi.org/10.1111/j.1462-2920.2010.02326.x

    Article  Google Scholar 

  95. van der Heijden MGA, Martin FM, Selosse M-A, Sanders IR (2015) Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol 205:1406–1423. https://doi.org/10.1111/nph.13288

    CAS  Article  Google Scholar 

  96. Velázquez MS, Cabello MN, Barrera M (2013) Composition and structure of arbuscular-mycorrhizal communities in El Palmar National Park, Argentina. Mycologia 105:509–520. https://doi.org/10.3852/11-353

    Article  Google Scholar 

  97. Verbruggen E, Toby Kiers E (2010) Evolutionary ecology of mycorrhizal functional diversity in agricultural systems: AMF in agriculture. Evol Appl 3:547–560. https://doi.org/10.1111/j.1752-4571.2010.00145.x

    Article  Google Scholar 

  98. Violi HA, Barrientos-Priego AF, Wright SF et al (2008) Disturbance changes arbuscular mycorrhizal fungal phenology and soil glomalin concentrations but not fungal spore composition in montane rainforests in Veracruz and Chiapas, Mexico. For Ecol Manag 254:276–290. https://doi.org/10.1016/j.foreco.2007.08.016

    Article  Google Scholar 

  99. Vos CM, Tesfahun AN, Panis B et al (2012) Arbuscular mycorrhizal fungi induce systemic resistance in tomato against the sedentary nematode Meloidogyne incognita and the migratory nematode Pratylenchus penetrans. Appl Soil Ecol 61:1–6. https://doi.org/10.1016/j.apsoil.2012.04.007

    Article  Google Scholar 

  100. Wang YY, Vestberg M, Walker C, Hurme T, Zhang X, Lindström K (2008) Diversity and infectivity of arbuscular mycorrhizal fungi in agricultural soils of the Sichuan Province of mainland China. Mycorrhiza 18:59–68. doi.org/10.1007/s00572-008-0161-x

  101. Xiang D, Verbruggen E, Hu Y et al (2014) Land use influences arbuscular mycorrhizal fungal communities in the farming-pastoral ecotone of northern China. New Phytol 204:968–978. https://doi.org/10.1111/nph.12961

    CAS  Article  Google Scholar 

  102. Xu X, Chen C, Zhang Z et al (2017) The influence of environmental factors on communities of arbuscular mycorrhizal fungi associated with Chenopodium ambrosioides revealed by MiSeq sequencing investigation. Sci Rep 7:45134. https://doi.org/10.1038/srep45134

    CAS  Article  Google Scholar 

  103. Yang H, Zang Y, Yuan Y et al (2012) Selectivity by host plants affects the distribution of arbuscular mycorrhizal fungi: evidence from ITS rDNA sequence metadata. BMC Evol Biol 12:1

    Article  Google Scholar 

  104. Zangaro W, de Assis RL, Rostirola LV et al (2008) Changes in arbuscular mycorrhizal associations and fine root traits in sites under different plant successional phases in southern Brazil. Mycorrhiza 19:37–45. https://doi.org/10.1007/s00572-008-0202-5

    Article  Google Scholar 

  105. Zar J (1999) Biostatistical analysis 4th edition. Prentice-Hall International, Upper Saddle River, NJ

    Google Scholar 

  106. Zhang S, Li Q, Lü Y et al (2013) Contributions of soil biota to C sequestration varied with aggregate fractions under different tillage systems. Soil Biol Biochem 62:147–156. https://doi.org/10.1016/j.soilbio.2013.03.023

    CAS  Article  Google Scholar 

  107. Zheng Y, Chen L, Luo C-Y et al (2016) Plant identity exerts stronger effect than fertilization on soil arbuscular mycorrhizal fungi in a sown pasture. Microb Ecol 72:647–658. https://doi.org/10.1007/s00248-016-0817-6

    CAS  Article  Google Scholar 

  108. Zheng Y, Kim Y-C, Tian X-F et al (2014) Differential responses of arbuscular mycorrhizal fungi to nitrogen addition in a near pristine Tibetan alpine meadow. FEMS Microbiol Ecol 89:594–605. https://doi.org/10.1111/1574-6941.12361

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank to the Regional Directorate for Forest Resources for field sites support.

Availability of data and materials

All data generated or analysed during this study are included in this published article.

Adherence to national and international regulations

Not applicable.

Funding

This research was funded by Fundo Regional para a Ciência e Tecnologia–Governo dos Açores (M3.1.a/F/059/2016; M3.1.a/F/012/2016) and by the Development Grant (IF/00462/2013) from the Fundação para a Ciência e a Tecnologia (FCT) Portugal with national funds and co-funded by FEDER and COMPETE 2020 program. The Royal Botanic Garden Edinburgh (RBGE) is supported by the Scottish Government’s Rural and Environmental Science and Analytical Services Division.

Author information

Affiliations

Authors

Contributions

Conceptualisation, CDM; investigation, CDM; AMF identification, CDM and CW; formal analysis, CDM, RP and PAVB; writing—original draft preparation, CDM and RP; writing—review and editing, CDM, RP, CW, SR-E, HF and PAVB; and PAVB and HF supervised the development of this work. All authors interpreted the results and contributed to the final manuscript and CDM led the writing of the manuscript. All authors gave final approval for publication.

Corresponding author

Correspondence to C. D. Melo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Section Editor: Marco Thines

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Melo, C.D., Pimentel, R., Walker, C. et al. Diversity and distribution of arbuscular mycorrhizal fungi along a land use gradient in Terceira Island (Azores). Mycol Progress 19, 643–656 (2020). https://doi.org/10.1007/s11557-020-01582-8

Download citation

Keywords

  • Arbuscular mycorrhizal fungi
  • Diversity
  • Land use
  • Disturbance