Advertisement

Mycological Progress

, Volume 17, Issue 4, pp 489–500 | Cite as

Mycobiomes of sympatric Amorphophallus albispathus (Araceae) and Camellia sinensis (Theaceae) – a case study reveals clear tissue preferences and differences in diversity and composition

  • Martin Unterseher
  • Samantha C Karunarathna
  • García Roberto Cruz
  • Nikki H Dagamac
  • Mathilde B Dahl
  • Serena E Dool
  • Michelle Galla
  • Lina Herbst
  • R Henrik Nilsson
  • Sébastien J. Puechmaille
  • Caroline Schöner
  • Michael Schöner
  • Abu B Siddique
  • Annette Teltewskoi
  • Kristina Wicke
  • David G Würth
  • Christian Wurzbacher
  • Kevin D Hyde
Original Article

Abstract

Multiple biotic and abiotic parameters influence the dynamics of individual fungal species and entire communities. Major drivers for tropical plant endophytes are undoubtedly seasonality, local habitat conditions and biogeography. However, host specialization and tissue preferences also contribute to the structuring of endophytic mycobiomes. To elucidate such specializations and preferences, we sampled two commercially important, unrelated plant species, Amorphophallus albispathus and Camellia sinensis (tea plant) simultaneously at close proximity. The mycobiomes of different tissue types were assessed with high-throughput amplicon sequencing of the internal transcribed spacer DNA region. Both plants hosted different fungal communities and varied in α- and β-diversity, despite their neighboring occurrence. However, the fungal assemblages of Amorphophallus leaflets shared taxa with the mycobiomes of tea leaves, thereby suggesting common driving forces for leaf-inhabiting fungi irrespective of host plant identity. The mycobiome composition and diversity of tea leaves was clearly driven by leaf age. We suggest that the very youngest tea leaves are colonized by stochastic processes, while mycobiomes of old leaves are rather similar as the result of progressive succession. The biodiversity of fungi associated with A. albispathus was characterized by a large number of unclassified OTUs (at genus and species level) and by tissue-specific composition.This study is the first cultivation-independent high-throughput assessment of fungal biodiversity of an Amorphophallus species, and additionally expands the knowledge base on fungi associated with tea plants.

Keywords

Camellia Mycobiome diversity High-throughput metabarcoding Host specialization Tissue preferences of endophytes 

Notes

Acknowledgements

UM greatly acknowledges financial support from the German Science Foundation (DFG) under grant number UN 262/9-1, the German Academic Exchange Service (DAAD) for a travel grant to Northern Thailand and the Mushroom Research Centre. WC acknowledges financial support from the Marie Sklodowska-Curie action CRYPTRANS. UM also thanks Mushroom Research Foundation for the support of the field work at Mushroom Research Center (MRC), Chiang Mai. Klaus Fischer (Greifswald) and the DFG Research Training Group GRK 2010 RESPONSE are acknowledged for support of a PhD student workshop about metabarcoding during which most data were analyzed.

Supplementary material

11557_2018_1375_MOESM1_ESM.xlsx (552 kb)
ESM 1 (XLSX 552 kb)
11557_2018_1375_MOESM2_ESM.r (50 kb)
ESM 2 (R 49 kb)
11557_2018_1375_MOESM3_ESM.txt (76 kb)
ESM 3 (TXT 75 kb)
11557_2018_1375_MOESM4_ESM.txt (1 kb)
ESM 4 (TXT 859 bytes)
11557_2018_1375_MOESM5_ESM.txt (8 kb)
ESM 5 (TXT 8 kb)
11557_2018_1375_MOESM6_ESM.txt (4 kb)
ESM 6 (TXT 3 kb)
11557_2018_1375_MOESM7_ESM.txt (4 kb)
ESM 7 (TXT 3 kb)
11557_2018_1375_MOESM8_ESM.txt (2 kb)
ESM 8 (TXT 1 kb)
11557_2018_1375_MOESM9_ESM.txt (3 kb)
ESM 9 (TXT 2 kb)
11557_2018_1375_MOESM10_ESM.txt (1 kb)
ESM 10 (TXT 1 kb)
11557_2018_1375_MOESM11_ESM.txt (5 kb)
ESM 11 (TXT 5 kb)
11557_2018_1375_MOESM12_ESM.docx (12.5 mb)
ESM 12 (DOCX 12835 kb)

References

  1. Abarenkov K, Adams RI, Laszlo I et al (2016) Annotating public fungal ITS sequences from the built environment according to the MIxS-built environment standard – a report from a may 23-24, 2016 workshop (Gothenburg, Sweden). MycoKeys 16:1–15CrossRefGoogle Scholar
  2. Agusta A, Ohashi K, Shibuya H (2006) Composition of the endophytic filamentous fungi isolated from the tea plant Camellia sinensis. J Nat Med 60:268–272CrossRefPubMedGoogle Scholar
  3. Arnold AE, Lutzoni F (2007) Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? Ecology 88:541–549CrossRefPubMedGoogle Scholar
  4. Bálint M, Schmidt P-A, Sharma R, Thines M, Schmitt I (2014) An Illumina metabarcoding pipeline for fungi. Ecol Evol 4:2642–2653CrossRefPubMedPubMedCentralGoogle Scholar
  5. Barthlott W, Szarzynski J, Vlek P, Lobin W, Korotkova N (2009) A torch in the rain forest: thermogenesis of the titan arum (Amorphophallus titanum). Plant Biol 11:499–505CrossRefPubMedGoogle Scholar
  6. Beath DDN (1996) Pollination of Amorphophallus johnsonii (Araceae) by carrion beetles (Phaeochrous amplus) in a Ghanaian rain forest. J Trop Ecol 12:409CrossRefGoogle Scholar
  7. Beenken L, Senn-Irlet B (2016) Neomycetes in Switzerland – state of knowledge and estimation of potential risks of alien fungi associated with plant. WSL Berichte 50, 50p., Eidg. Forschungsanstalt WSL, Birmensdorf, SwitzerlandGoogle Scholar
  8. Bengtsson-Palme J, Ryberg M, Hartmann M et al (2013) Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol Evol 4:914–919Google Scholar
  9. Brossa R, Casals I, Pintó-Marijuan M, Fleck I (2009) Leaf flavonoid content in Quercus ilex L. resprouts and its seasonal variation. Trees 23:401–408CrossRefGoogle Scholar
  10. Brown SP, Veach AM, Rigdon-Huss AR et al (2015) Scraping the bottom of the barrel: are rare high throughput sequences artifacts? Fungal Ecol 13:221–225CrossRefGoogle Scholar
  11. Brundrett MC (2006) Diversity and classification of mychorrhizal and endophytic fungi. In: Schulz BJE, Boyle CJC, Sieber TN (eds) Microbial root endophytes. Springer, Berlin, pp 281–298Google Scholar
  12. Cabrera C, Artacho R, Giménez R (2006) Beneficial effects of green tea—a review. J am Coll. Nutrition 25:79–99Google Scholar
  13. Carroll G, Petrini O (1983) Patterns of substrate utilization by some fungal endophytes from coniferous foliage. Mycologia 75:53CrossRefGoogle Scholar
  14. Chen J-L, Lin Y-R, Hou C-L, Wang S-J (2012) Species of Rhytismataceae on Camellia spp. from the Chinese mainland. Mycotaxon 118:219–230CrossRefGoogle Scholar
  15. Chen KL, Kirschner R (2017) Fungi from leaves of lotus (Nelumbo nucifera). Mycol Prog.  https://doi.org/10.1007/s11557-017-1324-y
  16. Chua M, Baldwin TC, Hocking TJ, Chan K (2010) Traditional uses and potential health benefits of Amorphophallus konjac K. Koch ex N.E.Br. J Ethnopharmacol 128:268–278CrossRefPubMedGoogle Scholar
  17. Collado J, Platas G, Pelaez F (1996) Fungal endophytes in leaves, twigs and bark of Quercus ilex from Central Spain. Nova Hedwigia 63:347–360Google Scholar
  18. Collado J, Platas G, Gonzales I, Pelaez F (1999) Geographical and seasonal influences on the distribution of fungal endophytes in Quercus ilex. New Phytol 144:525–532CrossRefGoogle Scholar
  19. Cusimano N, Bogner J, Mayo SJ, Boyce PC, Wong SY, Hesse M, Hetterscheid WLA, Keating RC, French JC (2011) Relationships within the Araceae: comparison of morphological patterns with molecular phylogenies. Am J Bot 98:654–668CrossRefPubMedGoogle Scholar
  20. Daglia M, Antiochia R, Sobolev AP, Mannina L (2014) Untargeted and targeted methodologies in the study of tea (Camellia sinensis L.) Food Res Int 63:275–289CrossRefGoogle Scholar
  21. Dean RA, Talbot NJ, Ebbole DJ et al (2005) The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434:980–986CrossRefPubMedGoogle Scholar
  22. Delaye L, García-Guzmán G, Heil M (2013) Endophytes versus biotrophic and necrotrophic pathogens—are fungal lifestyles evolutionarily stable traits? Fungal Divers 60:125–135CrossRefGoogle Scholar
  23. Deng Y, Zhu Y, Wang P et al (2011) Complete genome sequence of Bacillus subtilis BSn5, an endophytic bacterium of Amorphophallus konjac with antimicrobial activity for the plant pathogen Erwinia carotovora subsp. carotovora. J Bacteriol 193:2070–2071CrossRefPubMedPubMedCentralGoogle Scholar
  24. Doilom M, Dissanayake AJ, Wanasinghe DN et al (2016) Microfungi on Tectona grandis (teak) in northern Thailand. Fungal Divers.  https://doi.org/10.1007/s13225-016-0368-7
  25. Eberlein C, Heuer H, Vidal S, Westphal A (2016) Microbial communities in Globodera pallida females raised in potato monoculture soil. Phytopathology 106:581–590CrossRefPubMedGoogle Scholar
  26. Eusemann P, Schnittler M, Nilsson RH et al (2016) Habitat conditions and phenological tree traits overrule the influence of tree genotype in the needle mycobiome- Picea glauca system at an arctic treeline ecotone. New Phytol.  https://doi.org/10.1111/nph.13988
  27. Fang W, Yang L, Zhu X, Zeng L, Li X (2013) Seasonal and habitat dependent variations in culturable endophytes of Camellia sinensis. J Plant Pathol Microbiol 4:3.  https://doi.org/10.4172/2157-7471.1000169
  28. Fisher PJ, Anson AE, Petrini O (1986) Fungal endophytes in Ulex europaeus and Ulex gallii. Trans Br Mycol Soc 86:153–156CrossRefGoogle Scholar
  29. Friedman M (2007) Overview of antibacterial, antitoxin, antiviral, and antifungal activities of tea flavonoids and teas. Mol Nutri Food Res 51:116–134CrossRefGoogle Scholar
  30. Gaitanis G, Magiatis P, Hantschke M, Bassukas ID, Velegraki A (2012) The Malassezia genus in skin and systemic diseases. Clin Microbiol Rev 25:106–141CrossRefPubMedPubMedCentralGoogle Scholar
  31. Gille S, Cheng K, Skinner ME et al (2011) Deep sequencing of voodoo lily (Amorphophallus konjac): an approach to identify relevant genes involved in the synthesis of the hemicellulose glucomannan. Planta 234:515–526CrossRefPubMedPubMedCentralGoogle Scholar
  32. Graham HN (1992) Green tea composition, consumption, and polyphenol chemistry. Prev Med 21:334–350CrossRefPubMedGoogle Scholar
  33. Hane JK, Lowe RGT, Solomon PS et al (2007) Dothideomycete plant interactions illuminated by genome sequencing and EST analysis of the wheat pathogen Stagonospora nodorum. Plant Cell Online 19:3347–3368CrossRefGoogle Scholar
  34. Harbowy ME, Balentine DA, Davies AP, Cai Y (1997) Tea chemistry. Crit Rev Plant Sci 16:415–480CrossRefGoogle Scholar
  35. He Y, Caporaso JG, Jiang X-T et al (2015) Stability of operational taxonomic units: an important but neglected property for analyzing microbial diversity. Microbiome 3:20.  https://doi.org/10.1186/s40168-015-0081-x CrossRefPubMedPubMedCentralGoogle Scholar
  36. Hejnowicz Z, Barthlott W (2005) Structural and mechanical peculiarities of the petioles of giant leaves of Amorphophallus (Araceae). Am J Bot 92:391–403CrossRefPubMedGoogle Scholar
  37. Hetterscheid WLA (1994) Notes on the genus Amorphophallus (Araceae) – 2. Blumea 39:237–281Google Scholar
  38. Higgins KL, Coley PD, Kursar TA, Arnold AE (2011) Culturing and direct PCR suggest prevalent host generalism among diverse fungal endophytes of tropical forest grasses. Mycologia 103:247–260CrossRefPubMedGoogle Scholar
  39. Hill MO (1973) Diversity and evenness: a unifying notation and its consequences. Ecology 54:427–432CrossRefGoogle Scholar
  40. Hunter PJ, Hand P, Pink D, Whipps JM, Bending GD (2010) Both leaf properties and microbe-microbe interactions influence within-species variation in bacterial population diversity and structure in the lettuce (Lactuca species) phyllosphere. Appl Environ Microbiol 76:8117–8125CrossRefPubMedPubMedCentralGoogle Scholar
  41. Islam MT, Croll D, Gladieux P et al (2016) Emergence of wheat blast in Bangladesh was caused by a south American lineage of Magnaporthe oryzae. BMC Biol 14:84CrossRefPubMedPubMedCentralGoogle Scholar
  42. Jensen AM, Warren JM, Hanson PJ, Childs J, Wullschleger SD (2015) Needle age and season influence photosynthetic temperature response and total annual carbon uptake in mature Picea mariana trees. Ann Bot 116:821–832CrossRefPubMedPubMedCentralGoogle Scholar
  43. Johnston PR, Sutherland PW, Joshee S (2006) Visualising endophytic fungi within leaves by detection of (1′3)-β-d-glucans in fungal cell walls. Mycologist 20:159–162CrossRefGoogle Scholar
  44. Joshee S, Paulus BC, Park D, Johnston PR (2009) Diversity and distribution of fungal foliar endophytes in New Zealand Podocarpaceae. Mycol Res 113:1003–1015CrossRefPubMedGoogle Scholar
  45. Jumpponen A, Jones K (2009) Massively parallel 454 sequencing indicates hyperdiverse fungal communities in temperate Quercus macrocarpa phyllosphere. New Phytol 184:438–448CrossRefPubMedGoogle Scholar
  46. Jumpponen A, Jones K (2010) Seasonally dynamic fungal communities in the Quercus macrocarpa phyllosphere differ between urban and nonurban environments. New Phytol 186:496–513CrossRefPubMedGoogle Scholar
  47. Kembel SW, Mueller RC (2014) Plant traits and taxonomy drive host associations in tropical phyllosphere fungal communities. Botany 92:303–311CrossRefGoogle Scholar
  48. Khan A, Rahman M, Islam M (2008) Antibacterial, antifungal and cytotoxic activities of amblyone isolated from Amorphophallus campanulatus. Indian J Pharm 40:41CrossRefGoogle Scholar
  49. Kirschner R, Hou C-L, Chen C-J (2009) Co-occurrence of Pseudocercospora species and rhytismatalean ascomycetes on maple and Camellia in Taiwan. Mycol Prog 8:1–8CrossRefGoogle Scholar
  50. Kite GC, Hetterschieid WLA (1997) Inflorescence odours of Amorphophallus and Pseudodracontium (Araceae). Phytochemistry 46:71–75CrossRefGoogle Scholar
  51. Koljalg U, Nilsson R, Abarenkov K et al (2013) Towards a unified paradigm for sequence-based identification of fungi. Mol Ecol 22:5271–5277CrossRefPubMedGoogle Scholar
  52. Kowalski T, Holdenrieder O (2009) The teleomorph of Chalara fraxinea, the causal agent of ash dieback. For Pathol 39:304–308CrossRefGoogle Scholar
  53. Kusari P, Kusari S, Spiteller M, Kayser O (2013) Endophytic fungi harbored in Cannabis sativa L.: diversity and potential as biocontrol agents against host plant-specific phytopathogens. Fungal Divers 60:137–151CrossRefGoogle Scholar
  54. Langarica-Fuentes A, Handley PS, Houlden A, Fox G, Robson GD (2014) An investigation of the biodiversity of thermophilic and thermotolerant fungal species in composts using culture-based and molecular techniques. Fungal Ecol 11:132–144CrossRefGoogle Scholar
  55. Lee J-E, Lee B-J, Chung JO, Hwang J-A, Lee S-J, Lee C-H, Hong Y-S (2010) Geographical and climatic dependencies of green tea (Camellia sinensis) metabolites: a 1 H NMR-based metabolomics study. J Agric Food Chem 58:10582–10589Google Scholar
  56. Lee J-E, Lee B-J, Hwang J et al (2011) Metabolic dependence of green tea on plucking positions revisited: a metabolomic study. J Agric Food Chem 59:10579–10585CrossRefPubMedGoogle Scholar
  57. Liu F, Weir BS, Damm U et al (2015) Unravelling Colletotrichum species associated with Camellia: employing ApMat and GS loci to resolve species in the C. gloeosporioides complex. Persoonia 35:63–86CrossRefPubMedPubMedCentralGoogle Scholar
  58. Lodge DJ, Cantrell S (1995) Fungal communities in wet tropical forests: variation in time and space. Can J Bot 73:1391–1398CrossRefGoogle Scholar
  59. Matulich KL, Weihe C, Allison SD et al (2015) Temporal variation overshadows the response of leaf litter microbial communities to simulated global change. ISME J.  https://doi.org/10.1038/ismej.2015.58
  60. May RM (1991) A fondness for fungi. Nature 352:475–476CrossRefGoogle Scholar
  61. Misra RS, Sriram S, Nedunchezhiyan M, Mohandas C (2003) Field and storage diseases of Amorphophallus and their management. Aroideana 26:42–53Google Scholar
  62. Müller T, Ruppel S (2014) Progress in cultivation-independent phyllosphere microbiology. FEMS Microbiol Ecol 87:2–17CrossRefPubMedGoogle Scholar
  63. Nasanit R, Tangwong-o-thai A, Tantirungkij M, Limtong S (2015) The assessment of epiphytic yeast diversity in sugarcane phyllosphere in Thailand by culture-independent method. Fungal Biol 119:1145–1157CrossRefPubMedGoogle Scholar
  64. Navas-Molina J, Peralta-Sanchez J, Gonzalez A et al (2013) Advancing our understanding of the human microbiome using QIIME. Methods Enzymol 531:371–444CrossRefPubMedPubMedCentralGoogle Scholar
  65. Nilsson RH, Hyde KD, Pawłowska J et al (2014) Improving ITS sequence data for identification of plant pathogenic fungi. Fungal Divers 67:11–19CrossRefGoogle Scholar
  66. Olbrich M, Knappe C, Wenig M et al (2010) Ozone fumigation (twice ambient) reduces leaf infestation following natural and artificial inoculation by the endophytic fungus Apiognomonia errabunda of adult European beech trees. Environ Pollut 158:1043–1050CrossRefPubMedGoogle Scholar
  67. Osono T (2008) Endophytic and epiphytic phyllosphere fungi of Camellia japonica: seasonal and leaf age-dependent variations. Mycologia 100:387–391CrossRefPubMedGoogle Scholar
  68. Peršoh D (2013) Factors shaping community structure of endophytic fungi–evidence from the Pinus-Viscum-system. Fungal Divers 60:55–69CrossRefGoogle Scholar
  69. Peršoh D (2015) Plant-associated fungal communities in the light of meta’omics. Fungal Divers 75:1–25CrossRefGoogle Scholar
  70. Petrini O, Fisher PJ (1990) Occurrence of fungal endophytes in twigs of Salix fragilis and Quercus robur. Mycol Res 94:1077–1080CrossRefGoogle Scholar
  71. Piepenbring M, Hofmann TA, Miranda E, Cáceres O, Unterseher M (2015) Leaf shedding and weather in tropical dry-seasonal forest shape the phenology of fungi – lessons from two years of monthly surveys in southwestern Panama. Fungal Ecol 18:83–92CrossRefGoogle Scholar
  72. Pitkaranta M, Meklin T, Hyvarinen A et al (2008) Analysis of fungal flora in indoor dust by ribosomal DNA sequence analysis, quantitative PCR, and culture. Appl Environ Microbiol 74:233–244CrossRefPubMedGoogle Scholar
  73. Punekar SA, Kumaran KPN (2010) Pollen morphology and pollination ecology of Amorphophallus species from north western Ghats and Konkan region of India. Flora 205:326–336CrossRefGoogle Scholar
  74. Rodriguez R, White JJ, Arnold A, Redman R (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330CrossRefPubMedGoogle Scholar
  75. Sansone C, Rita Massardo D, Pontieri P et al (2007) Isolation of a psychrotolerant Debaryomyces hansenii strain from fermented tea plant (Camellia sinensis) leaves. J Plant Interact 2:169–174CrossRefGoogle Scholar
  76. Siddique AB, Unterseher M (2016) A cost-effective and efficient strategy for Illumina sequencing of fungal communities: a case study of beech endophytes identified elevation as main explanatory factor for diversity and community composition. Fungal Ecol 20:175–185CrossRefGoogle Scholar
  77. Siddique AB, Khokon AM, Unterseher M (2017) What do we learn from cultures in the omics age? High-throughput sequencing and cultivation of leaf-inhabiting endophytes from beech (Fagus sylvatica L.) revealed complementary community composition but similar correlations with local habitat conditions. MycoKeys 20:1–16CrossRefGoogle Scholar
  78. Smith FA, Smith SE (1997) Tansley review no. 96. Structural diversity in (vesicular)-arbuscular mycorrhizal symbioses. New Phytol 137:373–388CrossRefGoogle Scholar
  79. Solis MJL, Dela Cruz TE, Schnittler M, Unterseher M (2016) The diverse community of leaf-inhabiting fungal endophytes from Philippine natural forests reflects phylogenetic patterns of their host plant species Ficus benjamina, F. elastica and F. religiosa. Mycoscience.  https://doi.org/10.1016/j.myc.2015.10.002
  80. Song R, Kelman D, Johns KL, Wright AD (2012) Correlation between leaf age, shade levels, and characteristic beneficial natural constituents of tea (Camellia sinensis) grown in Hawaii. Food Chem 133:707–714CrossRefGoogle Scholar
  81. Stajich JE, Berbee ML, Blackwell M et al (2009) The fungi. Curr Biol 19:R840–R845CrossRefPubMedPubMedCentralGoogle Scholar
  82. Stone JK (1988) Fine structure of latent infections by on Douglas-fir, with observations on uninfected epidermal cells. Can J Bot 66:45–54CrossRefGoogle Scholar
  83. Suryanarayanan TS, Murali TS, Thirunavukkarasu N et al (2011) Endophytic fungal communities in woody perennials of three tropical forest types of the western Ghats, southern India. Biodivers Conserv 20:913–928CrossRefGoogle Scholar
  84. Tondello A, Vendramin E, Villani M, Baldan B, Squartini A (2012) Fungi associated with the southern Eurasian orchid Spiranthes spiralis (L.) Chevall. Fungal Biol 116:543–549CrossRefPubMedGoogle Scholar
  85. Unterseher M, Reiher A, Finstermeier K, Otto P, Morawetz W (2007) Species richness and distribution patterns of leaf-inhabiting endophytic fungi in a temperate forest canopy. Mycol Prog 6:201–212CrossRefGoogle Scholar
  86. Unterseher M, Gazis R, Chaverri P, Guarniz CFG, Tenorio DHZ (2013) Endophytic fungi from Peruvian highland and lowland habitats form distinctive and host plant-specific assemblages. Biodivers Conserv 22:999–1016CrossRefGoogle Scholar
  87. Unterseher M, Siddique AB, Brachmann A, Peršoh D (2016) Diversity and composition of the leaf mycobiome of beech (Fagus sylvatica) are affected by local habitat conditions and leaf biochemistry. PLoS ONE 11:e0152878CrossRefPubMedPubMedCentralGoogle Scholar
  88. Viret O, Petrini O (1994) Colonization of beech leaves (Fagus sylvatica) by the endophyte Discula umbrinella (teleomorph: Apiognomonia errabunda). Mycol Res 98:423–432CrossRefGoogle Scholar
  89. Wiseman SA, Balentine DA, Frei B (1997) Antioxidants in tea. Crit Rev Food Sci Nutri 37:705–718CrossRefGoogle Scholar
  90. Xu A, Wang Y, Wen J et al (2011) Fungal community associated with fermentation and storage of Fuzhuan brick-tea. Int J Food Microbiol 146:14–22CrossRefPubMedGoogle Scholar
  91. Yang CS, Wang H, Li GX et al (2011) Cancer prevention by tea: evidence from laboratory studies. Pharmacol Res 64:113–122CrossRefPubMedGoogle Scholar
  92. Yu L, Zhao JR, SG X et al (2014) First report of gray mold on Amorphophallus muelleri caused by Botrytis cinerea in China. Plant Dis 98:692–692CrossRefGoogle Scholar
  93. Zambell CB, White JF (2015) In the forest vine Smilax rotundifolia, fungal epiphytes show site-wide spatial correlation, while endophytes show evidence of niche partitioning. Fungal Divers 75:279–297CrossRefGoogle Scholar
  94. Zheng X, Pan C, Diao Y et al (2013) Development of microsatellite markers by transcriptome sequencing in two species of Amorphophallus (Araceae). BMC Genomics 14:490CrossRefPubMedPubMedCentralGoogle Scholar
  95. Zheng W-J, Wan X-C, Bao G-H (2015) Brick dark tea: a review of the manufacture, chemical constituents and bioconversion of the major chemical components during fermentation. Phytochem Rev 14:499–523CrossRefGoogle Scholar

Copyright information

© German Mycological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Martin Unterseher
    • 1
  • Samantha C Karunarathna
    • 2
  • García Roberto Cruz
    • 3
  • Nikki H Dagamac
    • 3
  • Mathilde B Dahl
    • 3
  • Serena E Dool
    • 4
  • Michelle Galla
    • 5
  • Lina Herbst
    • 5
  • R Henrik Nilsson
    • 6
  • Sébastien J. Puechmaille
    • 4
  • Caroline Schöner
    • 4
  • Michael Schöner
    • 4
  • Abu B Siddique
    • 3
  • Annette Teltewskoi
    • 7
  • Kristina Wicke
    • 5
  • David G Würth
    • 3
  • Christian Wurzbacher
    • 6
  • Kevin D Hyde
    • 8
  1. 1.Evangelisches Schulzentrum MartinschuleGreifswaldGermany
  2. 2.Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of BotanyChinese Academy of SciencesKunmingChina
  3. 3.University of Greifswald, Institute of Botany and Landscape EcologyGreifswaldGermany
  4. 4.University of Greifswald, Zoology Institute and MuseumGreifswaldGermany
  5. 5.University of Greifswald, Institute of Mathematics and Computer ScienceGreifswaldGermany
  6. 6.Department of Biological and Environmental SciencesUniversity of GothenburgGöteborgSweden
  7. 7.LifeMapsGreifswaldGermany
  8. 8.Center of Excellence in Fungal ResearchMae Fah Luang UniversityChiang RaiThailand

Personalised recommendations