Fungi in water samples of a full-scale water work

  • Romano De Marchi
  • Michael Koss
  • Dominik Ziegler
  • Sophie De Respinis
  • Orlando Petrini
Original Article
  • 111 Downloads

Abstract

This study aimed to assess the efficacy of the treatments used to eliminate fungal propagules in water plants and to investigate the biodiversity of fungal taxa in treated and drinking water. We investigated water from nine sites in two water plants and from one fountain. Up to 25 samples from each site were analysed. Identification of fungi was carried out mainly by matrix-assisted laser desorption ionisation–time of flight (MALDI-TOF) mass spectrometry (MS) or, if no MALDI-TOF MS reference spectra were available, by internal transcribed spacer (ITS), partial transcription elongation factor 1 (tef1) or partial beta-tubulin sequencing. A total of 92 taxa could be identified by either MALDI-TOF MS or sequencing. The taxonomic spectrum is in agreement with that reported in publications on fungal communities of drinking water. The treatment steps used reduced significantly fungal colonisation of the water: even if the final products (drinking water) from both plants differ statistically in their fungal colony-forming units (CFUs) content, the difference is not biologically meaningful. A multivariate analysis showed a separation of the sampling sites of the two plants, reflecting the different origin of the raw water and the different water treatment processes. Reduction of fungal CFU and number of taxa by the treatment steps was similar in the two plants and not influenced by the treatment methods. In both plants, the first step was responsible for at least 90% reduction of CFU. Low CFU levels were maintained over the whole process chain and the water transport to the drinking water fountain did not significantly modify the CFU number.

Keywords

Ecology Identification ITS MALDI-TOF Taxonomy Ascomycota Drinking water 

References

  1. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1989) Current protocols in molecular biology. Greene Publishing Associated & Wiley Interscience, New YorkGoogle Scholar
  2. Aveskamp MM, de Gruyter J, Woudenberg JH, Verkley GJ, Crous PW (2010) Highlights of the Didymellaceae: a polyphasic approach to characterise Phoma and related pleosporalean genera. Stud Mycol 65:1–60CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bensch K, Braun U, Groenewald JZ, Crous PW (2012) The genus Cladosporium. Stud Mycol 72(1):1–401CrossRefPubMedPubMedCentralGoogle Scholar
  4. Chen Q, Jiang JR, Zhang GZ, Cai L, Crous PW (2015) Resolving the Phoma enigma. Stud Mycol 82:137–217Google Scholar
  5. Cornut J, Clivot H, Chauvet E, Elger A, Pagnout C, Guérold F (2012) Effect of acidification on leaf litter decomposition in benthic and hyporheic zones of woodland streams. Water Res 46:6430–6444CrossRefPubMedGoogle Scholar
  6. De Hoog G, Vicente VA, Najafzadeh M, Harrak M, Badali H, Seyedmousavi S (2011) Waterborne Exophiala species causing disease in cold-blooded animals. Persoonia 27(1):46–72CrossRefPubMedPubMedCentralGoogle Scholar
  7. De Hoog GS, Smith MT (2004) Ribosomal gene phylogeny and species delimitation in Geotrichum and its teleomorphs. Stud Mycol 50:489–515Google Scholar
  8. Doggett MS (2000) Characterization of fungal biofilms within a municipal water distribution system. Appl Environ Microbiol 66(3):1249–1251CrossRefPubMedPubMedCentralGoogle Scholar
  9. Douterelo I, Jackson M, Solomon C, Boxall J (2016) Microbial analysis of in situ biofilm formation in drinking water distribution systems: implications for monitoring and control of drinking water quality. Appl Microbiol Biotechnol 100:3301–3311Google Scholar
  10. Druzhinina I, Chaverri P, Fallah P, Kubicek C, Samuels G (2004) Hypocrea flavoconidia, a new species with yellow conidia from Costa Rica. Stud Mycol 50:400–407Google Scholar
  11. Druzhinina IS, Kopchinskiy AG, Komoń M, Bissett J, Szakacs G, Kubicek CP (2005) An oligonucleotide barcode for species identification in Trichoderma and Hypocrea. Fungal Genet Biol 42(10):813–828CrossRefPubMedGoogle Scholar
  12. Fog Nielsen K (2003) Mycotoxin production by indoor molds. Fungal Genet Biol 39(2):103–117CrossRefPubMedGoogle Scholar
  13. Fogle MR, Douglas DR, Jumper CA, Straus DC (2008) Growth and mycotoxin production by Chaetomium globosum is favored in a neutral pH. Int J Mol Sci 9(12):2357–2365CrossRefPubMedPubMedCentralGoogle Scholar
  14. Frisvad JC, Samson RA (2004) Polyphasic taxonomy of Penicillium subgenus Penicillium. A guide to identification of food and air-borne terverticillate Penicillia and their mycotoxins. Stud Mycol 49(1):1–174Google Scholar
  15. Gallard H, Von Gunten U, Kaiser H (2003) Prediction of the disinfection and oxidation efficiency of full-scale ozone reactors. J Water Supply Res Technol AQUA 52(4):277–290Google Scholar
  16. Gerlach W, Nirenberg H (1982) The genus Fusarium – a pictorial atlas. Mitteilungen aus der Biologischen Bundesanstalt fur Land-und Forstwirtschaft Berlin-Dahlem (209)Google Scholar
  17. Giraldo A, Sutton DA, Samerpitak K, de Hoog GS, Wiederhold NP, Guarro J, Gené J (2014) Occurrence of Ochroconis and Verruconis species in clinical specimens from the United States. J Clin Microbiol 52(12):4189–4201CrossRefPubMedPubMedCentralGoogle Scholar
  18. Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 61(4):1323–1330PubMedPubMedCentralGoogle Scholar
  19. Göttlich E, Flemming HC (2002) Auftreten von obligat und fakultativ pathogenen Organismen in Trinkwasser-Biofilme: Pilze. Berichte aus dem IWW, vol 36. Mülheim an der RuhrGoogle Scholar
  20. Göttlich E, van der Lubbe W, Lange B, Fiedler S, Melchert I, Reifenrath M, Flemming HC, de Hoog S (2002) Fungal flora in groundwater-derived public drinking water. Int J Hyg Environ Health 205(4):269–279CrossRefPubMedGoogle Scholar
  21. Grabińska-Łoniewska A, Koniłłowicz-Kowalska T, Wardzyńska G, Boryn K (2007) Occurrence of fungi in water distribution system. Polish J Environ Stud 16(4):539–547Google Scholar
  22. Hageskal G, Knutsen AK, Gaustad P, de Hoog GS, Skaar I (2006) Diversity and significance of mold species in Norwegian drinking water. Appl Environ Microbiol 72(12):7586–7593CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hageskal G, Lima N, Skaar I (2009) The study of fungi in drinking water. Mycol Res 113(Pt 2):165–172CrossRefPubMedGoogle Scholar
  24. Harman BI, Koseoglu H, Yigit NO, Sayilgan E, Beyhan M, Kitis M (2010) The removal of disinfection by-product precursors from water with ceramic membranes. Water Sci Technol 62(3):547–555CrossRefPubMedGoogle Scholar
  25. Harrington TC, McNew DL (2003) Phylogenetc analysis places the Phialophora-like anamorph genus Cadophora in the Helotiales. Mycotaxon 87:141–152Google Scholar
  26. Heinrichs G, Haase G (2013) Dunkel pigmentierte Biofilme an Trinkwasserarmaturen–mykologische Analyse und hygienische Bewertung, Ursachen und Abhilfemaßnahmen. Vom Wasser 110(2):41–43Google Scholar
  27. Jekel MR (1994) Flocculation effects of ozone. Ozone Science & Engeineering 16(1):55–56CrossRefGoogle Scholar
  28. Jermann D, Pronk W, Kägi R, Halbeisen M, Boller M (2008) Influence of interactions between NOM and particles on UF fouling mechanisms. Water Res 42(14):3870–3878CrossRefPubMedGoogle Scholar
  29. Jones EBG, Hyde KD, Pang K-L (2014) Freshwater fungi and fungal-like organisms. De Gruyter, Berlin/BostonGoogle Scholar
  30. Kanzler D, Buzina W, Paulitsch A, Haas D, Platzer S, Marth E, Mascher F (2008) Occurrence and hygienic relevance of fungi in drinking water. Mycoses 51(2):165–169CrossRefPubMedGoogle Scholar
  31. Kelley J (2001) Identification and control of fungi in distribution systems. Amer Water Works Assn; illustrated edition (January 2003), Denver, USAGoogle Scholar
  32. Klich MA (2002) Identification of common Aspergillus species. Centraalbureau voor Schimmelcultures, UtrechtGoogle Scholar
  33. Langvad F, Engjom (2016) Infection with Exophiala salmonis, vol 42. ICES Identification leaflets for diseases and parasites of fish and shellfish. International Council for the Exploration of the SeaGoogle Scholar
  34. Lemley A, Wagenet L, Kneen B (1995) Activated carbon treatment of drinking water. Water Treatment Notes, Fact Sheet 3. Cornell Cooperative Extension, New York State College of Human EcologyGoogle Scholar
  35. Lezcano I, Pérez Rey R, Baluja C, Sánchez E (1999) Ozone inactivation of Pseudomonas aeruginosa, Escherichia coli, Shigella sonnei and Salmonella typhimurium in water. Ozone Sci Eng 21(3):293–300CrossRefGoogle Scholar
  36. Lombard L, Van der Merwe N, Groenewald J, Crous P (2015) Generic concepts in Nectriaceae. Stud Mycol 80:189–245CrossRefPubMedPubMedCentralGoogle Scholar
  37. Luangsa-ard J, Houbraken J, van Doorn T, Hong S-B, Borman AM, Hywel-Jones NL, Samson RA (2011) Purpureocillium, a new genus for the medically important Paecilomyces lilacinus. FEMS Microbiol Letters 321(2):141–149CrossRefGoogle Scholar
  38. Mauclaire L, Schürmann A, Thullner M, Zeyer J, Gammeter S (2004) Sand filtration in a water treatment plant: biological parameters responsible for clogging. J Water Supply: Research and Technology – Aqua 53(2):93–108Google Scholar
  39. Mesquita-Rocha S, Godoy-Martinez PC, Goncalves SS, Urrutia MD, Carlesse F, Seber A, Silva MA, Petrilli AS, Colombo AL (2013) The water supply system as a potential source of fungal infection in paediatric haematopoietic stem cell units. BMC Infect Dis 13:289CrossRefPubMedPubMedCentralGoogle Scholar
  40. Nagy V, Seidl V, Szakacs G, Komon-Zelazowska M, Kubicek CP, Druzhinina IS (2007) Application of DNA bar codes for screening of industrially important fungi: the haplotype of Trichoderma harzianum sensu stricto indicates superior chitinase formation. Appl Environ Microbiol 73(21):7048–7058CrossRefPubMedPubMedCentralGoogle Scholar
  41. Niemi RM, Knuth S, Lundstrom K (1982) Actinomycetes and fungi in surface waters and in potable water. Appl Environ Microbiol 43(2):378–388PubMedPubMedCentralGoogle Scholar
  42. Pereira VJ, Fernandes D, Carvalho G, Benoliel MJ, San Romao MV, Barreto Crespo MT (2010) Assessment of the presence and dynamics of fungi in drinking water sources using cultural and molecular methods. Water Res 44(17):4850–4859CrossRefPubMedGoogle Scholar
  43. Petkovits T, Nagy LG, Hoffmann K, Wagner L, Nyilasi I, Griebel T, Schnabelrauch D, Vogel H, Voigt K, Vagvolgyi C, Papp T (2011) Data partitions, Bayesian analysis and phylogeny of the zygomycetous fungal family Mortierellaceae, inferred from nuclear ribosomal DNA sequences. PLoS One 6(11):e27507CrossRefPubMedPubMedCentralGoogle Scholar
  44. Rennecker JL, Mariñas BJ, Owens JH, Rice EW (1999) Inactivation of Cryptosporidium parvum oocysts with ozone. Water Res 33(11):2481–2488CrossRefGoogle Scholar
  45. Rose J, Botzenhart K (1990) Cryptosporidium und Giardia im Wasser: Nachweisverfahren, Häufigkeit und Bedeutung als Krankheitserreger. Gas- und Wasserfach Wasser, Abwasser 131(10):563–572Google Scholar
  46. Samerpitak K, Duarte A, Attili-Angelis D, Pagnocca FC, Heinrichs G, Rijs A, Alfjorden A, van den Ende AG, Menken S, de Hoog G (2015) A new species of the oligotrophic genus Ochroconis (Sympoventuriaceae). Mycol Progr 14(2):6CrossRefGoogle Scholar
  47. Samuels GJ, Dodd SL, Gams W, Castlebury LA, Petrini O (2002) Trichoderma species associated with the green mold epidemic of commercially grown Agaricus bisporus. Mycologia 94(1):146–170CrossRefPubMedGoogle Scholar
  48. Sandoval-Sierra JV, Martín MP, Diéguez-Uribeondo J (2014) Species identification in the genus Saprolegnia (Oomycetes): defining DNA-based molecular operational taxonomic units. Fungal Biol 118(7):559–578CrossRefPubMedGoogle Scholar
  49. Schleupen E (1996) Cryptosporidium parvum and Giardia lamblia: Literaturrecherche. Gas- und Wasserfach Wasser, Abwasser 137(2):83–93Google Scholar
  50. Schroers HJ (2001) A monograph of Bionectria (Ascomycota, Hypocreales, Bionectriaceae) and its Clonostachys anamorphs. Stud Mycol 46:1–211Google Scholar
  51. Schwartz T, Hoffmann S, Obst U (2003) Formation of natural biofilms during chlorine dioxide and u.V. Disinfection in a public drinking water distribution system. J Appl Microbiol 95(3):591–601CrossRefPubMedGoogle Scholar
  52. Scott JA, Wong B, Summerbell RC, Untereiner WA (2008) A survey of Penicillium brevicompactum and P. bialowiezense from indoor environments, with commentary on the taxonomy of the P. brevicompactum group. Botany 86(7):732–741CrossRefGoogle Scholar
  53. Sonigo P, Detoni A, Reilly K (2011) A review of fungi in drinking water and the implications for human health. WD 0906 DEFRAGoogle Scholar
  54. Summerell BA, Laurence MH, Liew ECY, Leslie JF (2010) Biogeography and phylogeography of Fusarium: a review. Fungal Divers 44(1):3–13CrossRefGoogle Scholar
  55. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  56. Teunis PF, Rutjes SA, Westrell T, de Roda Husman AM (2009) Characterization of drinking water treatment for virus risk assessment. Water Res 43(2):395–404CrossRefPubMedGoogle Scholar
  57. Triest D, De Cremer K, Pierard D, Hendrickx M (2016) Unique phylogenetic lineage found in the Fusarium-like clade after re-examining BCCM/IHEM fungal culture collection material. Mycobiology 44(3):121–130CrossRefPubMedPubMedCentralGoogle Scholar
  58. Visagie CM, Houbraken J, Frisvad JC, Hong SB, Klaassen CH, Perrone G, Seifert KA, Varga J, Yaguchi T, Samson RA (2014) Identification and nomenclature of the genus Penicillium. Stud Mycol 78:343–371CrossRefPubMedPubMedCentralGoogle Scholar
  59. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications 18(1):315–322Google Scholar
  60. WHO (2017) Guidelines for drinking-water quality: fourth edition incorporating the first addendumGoogle Scholar
  61. Zalar P, de Hoog GS, Schroers HJ, Crous PW, Groenewald JZ, Gunde-Cimerman N (2007) Phylogeny and ecology of the ubiquitous saprobe Cladosporium sphaerospermum, with descriptions of seven new species from hypersaline environments. Stud Mycol 58:157–183CrossRefPubMedPubMedCentralGoogle Scholar
  62. Zare R, Gams W, Evans HC (2001) A revision of Verticillium section Prostrata. V. The genus Pochonia, with notes on Rotiferophthora. Nova Hedwigia 73(1–2):51–86Google Scholar

Copyright information

© German Mycological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.WasserversorgungZurichSwitzerland
  2. 2.Mabritec AGRiehenSwitzerland
  3. 3.Laboratory of Applied MicrobiologyUniversity of Applied Sciences and Arts of Southern SwitzerlandBellinzonaSwitzerland
  4. 4.POLE Pharma ConsultingBreganzonaSwitzerland

Personalised recommendations