Advertisement

Mycological Progress

, Volume 17, Issue 3, pp 343–356 | Cite as

Taxonomic study on Alternaria sections Infectoriae and Pseudoalternaria associated with black (sooty) head mold of wheat and barley in Iran

  • Alireza Poursafar
  • Youbert Ghosta
  • Alexandra S. Orina
  • Philipp B. Gannibal
  • Mohammad Javan-Nikkhah
  • Daniel P. Lawrence
Original Article

Abstract

During the spring and summer of 2014 and 2015, wheat and barley fields in the Iranian provinces of Golestan and Alborz showed a high incidence of symptoms of black (sooty) head mold of wheat and barley. The isolation results revealed that Alternaria was associated with these symptoms. One hundred and forty isolates were collected and morphologically characterized based on the development of conidial chains with primary, secondary, and tertiary branching patterns, consistent with the three-dimensional sporulation complexity of members of Alternaria in sections Infectoriae and Pseudoalternaria. Subsequently, 16 Alternaria isolates exhibiting high morphological diversity were characterized based on extensive morphological and molecular comparisons. Phylogenetic analyses of three loci [ITS, glyceraldehyde 3-phosphate dehydrogenase (gpd), and plasma membrane ATPase (ATPase)] revealed that 15 isolates belonged to section Infectoriae but could not be assigned to phylogenetic species and one isolate represents a new species, Alternaria kordkuyana sp. nov., in section Pseudoalternaria. Morphological assessments revealed a high degree of variation among section Infectoriae isolates and that A. kordkuyana has significant morphological differences as compared to the three other species currently described in section Pseudoalternaria.

Keywords

Alternaria Sooty head mold Taxonomy Alternaria kordkuyana sp. nov. Section Pseudoalternaria 

Notes

Acknowledgements

DNA sequencing was carried out via support from the Russian Science Foundation (project 14-26-00067). The authors would also like to thank the High Council for Research of the University of Tehran for financial support of this project.

Supplementary material

11557_2017_1358_Fig6_ESM.gif (52 kb)
Fig. S1

Single most likely tree (ln likelihood − 3689.4107) resulting from the analysis of 44 Alternaria ITS sequences. The numbers represent maximum likelihood/maximum parsimony bootstrap values, respectively. The scale bar represents the number of expected substitutions per site (GIF 52 kb)

11557_2017_1358_MOESM1_ESM.tif (1.2 mb)
High Resolution Image (TIFF 1246 kb)
11557_2017_1358_Fig7_ESM.gif (57 kb)
Fig. S2

Single most likely tree (ln likelihood − 1602.8164) resulting from the analysis of 44 Alternaria gpd sequences. The numbers represent maximum likelihood/maximum parsimony bootstrap values, respectively. Values represented by an asterisk were less than 70%. The scale bar represents the number of expected substitutions per site (GIF 57 kb)

11557_2017_1358_MOESM2_ESM.tif (1.3 mb)
High Resolution Image (TIFF 1334 kb)
11557_2017_1358_Fig8_ESM.gif (55 kb)
Fig. S3

Single most likely tree (ln likelihood − 1076.2728) resulting from the analysis of 44 Alternaria plasma membrane ATPase sequences. The numbers represent maximum likelihood/maximum parsimony bootstrap values, respectively. Values represented by an asterisk were less than 70%. The scale bar represents the expected number of substitutions per site (GIF 55 kb)

11557_2017_1358_MOESM3_ESM.tif (1.3 mb)
High Resolution Image (TIFF 1285 kb)

References

  1. Andersen B, Thrane U (1996) Differentiation of Alternaria infectoria and Alternaria alternata based on morphology, metabolite profiles, and cultural characteristics. Can J Microbiol 42(7):685–689CrossRefGoogle Scholar
  2. Andersen B, Krøger E, Roberts RG (2001) Chemical and morphological segregation of Alternaria alternata, A. gaisen and A. longipes. Mycol Res 105:291–299CrossRefGoogle Scholar
  3. Andersen B, Krøger E, Roberts RG (2002) Chemical and morphological segregation of Alternaria arborescens, A. infectoria and A. tenuissima species-groups. Mycol Res 106(2):170–182CrossRefGoogle Scholar
  4. Andersen B, Sørensen JL, Nielsen KF, van den Ende BG, de Hoog S (2009) A polyphasic approach to the taxonomy of the Alternaria infectoria species-group. Fungal Genet Biol 46(9):642–656CrossRefPubMedGoogle Scholar
  5. Andersen B, Nielsen KF, Pinto VF, Patriarca A (2015) Characterization of Alternaria strains from Argentinean blueberry, tomato, walnut and wheat. Int J Food Microbiol 196:1–10CrossRefPubMedGoogle Scholar
  6. Berbee ML, Pirseyedi M, Hubbard S (1999) Cochliobolus phylogenetics and the origin of known, highly virulent pathogens, inferred from ITS and glyceraldehyde-3-phosphate dehydrogenase gene sequences. Mycologia 91:964–977CrossRefGoogle Scholar
  7. Chou HH, Wu WS (2002) Phylogenetic analysis of internal transcribed spacer regions of the genus Alternaria, and the significance of filament-beaked conidia. Mycol Res 106:164–169CrossRefGoogle Scholar
  8. Christensen KB, Van Klink JW, Weavers RT, Larsen TO, Andersen B, Phipps RK (2005) Novel chemotaxonomic markers of the Alternaria infectoria species-group. J Agric Food Chem 53(24):9431–9435CrossRefPubMedGoogle Scholar
  9. Conner RL, Davidson JGN (1988) Resistance in wheat to black point caused by Alternaria alternata and Cochliobolus sativus. Can J Plant Sci 68(2):351–359CrossRefGoogle Scholar
  10. Conner RL, Kuzyk AD (1988) Black point incidence in soft white spring wheat in southern Alberta and Saskatchewan between 1982 and 1987. Can Plant Dis Surv 68:27–31Google Scholar
  11. Crous PW, Wingfield MJ, Richardson DM, Le Roux JJ, Strasberg D, Edwards J, Roets F, Hubka V, Taylor PW, Heykoop M, Martín MP et al (2016) Fungal Planet description sheets: 400–468. Persoonia 36:316–458CrossRefPubMedPubMedCentralGoogle Scholar
  12. de Hoog GS, Horre R (2002) Molecular taxonomy of the Alternaria and Ulocladium species from humans and their identification in the routine laboratory. Mycoses 45:259–276CrossRefPubMedGoogle Scholar
  13. Dubois D, Pihet M, Le Clec’h C, Croué A, Beguin H, Bouchara JP, Chabasse D (2005) Cutaneous phaeohyphomycosis due to Alternaria infectoria. Mycopathologia 160:117–123CrossRefPubMedGoogle Scholar
  14. Dugan FM, Peever TL (2002) Morphological and cultural differentiation of described species of Alternaria from Poaceae. Mycotaxon 83:229–264Google Scholar
  15. Ellis MB (1971) Dematiaceous hyphomycetes. Commonwealth Mycological Institute, Kew, 608 ppGoogle Scholar
  16. Ellis MB (1976) More dematiaceous hyphomycetes. Commonwealth Mycological Institute, Kew, 507 ppGoogle Scholar
  17. Ellis SA, Gooding MJ, Thompson AJ (1996) Factors influencing the relative susceptibility of wheat cultivars (Triticum aestivum L.) to blackpoint. Crop Prot 15(1):69–76CrossRefGoogle Scholar
  18. Farr DF, Bills GF, Chamuris GP, Rossman AY (1989) Fungi on plants and plant products in the United States. APS Press, St. Paul, 1252 ppGoogle Scholar
  19. Fernandez MR, Conner RL (2011) Black point and smudge in wheat. Prairie Soils Crops 4:158–164Google Scholar
  20. Fernandez MR, Clarke JM, DePauw RM, Irvine RB, Knox RE (1994) Black point and red smudge in irrigated durum wheat in southern Saskatchewan in 1990–1992. Can J Plant Pathol 16(3):221–227CrossRefGoogle Scholar
  21. Frisvad JC (1983) A selective and indicative medium for groups of Penicillium viridicatum producing different mycotoxins in cereals. J Appl Microbiol 54(3):409–416Google Scholar
  22. Gannibal PB, Lawrence DP (2016) Distribution of Alternaria species among sections. 3. Sections Infectoriae and Pseudoalternaria. Mycotaxon 131(4):781–790CrossRefGoogle Scholar
  23. Grum-Grzhimaylo AA, Georgieva ML, Bondarenko SA, Debets AJM, Bilanenko EN (2015) On the diversity of fungi from soda soils. Fungal Divers 76:27–74CrossRefGoogle Scholar
  24. Hershman DE (2011) Black “sooty” head mold of wheat. University of Kentucky. Plant Pathology Fact Sheet, PPFS-AG-SG-07, 2 ppGoogle Scholar
  25. Joly P (1964) Le genre Alternaria. Encycl Mycol 33:1–250Google Scholar
  26. Kosiak B, Torp M, Skjerve E, Andersen B (2004) Alternaria and Fusarium in Norwegian grains of reduced quality—a matched pair sample study. Int J Food Microbiol 93:51–62CrossRefPubMedGoogle Scholar
  27. Languasco L, Orsi C, Rossi V (1993) Forecasting black point of wheat using meteorological and fungal isolation data. Danish Inst Plant Soil Sci 7:203–209Google Scholar
  28. Lawrence DP, Park MS, Pryor BM (2012) Nimbya and Embellisia revisited, with nov. comb for Alternaria celosiae and A. perpunctulata. Mycol Prog 11:799–815CrossRefGoogle Scholar
  29. Lawrence DP, Gannibal PB, Peever TL, Pryor BM (2013) The sections of Alternaria: formalizing species-group concepts. Mycologia 105:530–546CrossRefPubMedGoogle Scholar
  30. Lawrence DP, Gannibal PB, Dugan FM, Pryor BM (2014) Characterization of Alternaria isolates from the infectoria species-group and a new taxon from Arrhenatherum, Pseudoalternaria arrhenatheria sp. nov. Mycol Prog 13:257–276CrossRefGoogle Scholar
  31. Lawrence DP, Rotondo F, Gannibal PB (2016) Biodiversity and taxonomy of the pleomorphic genus Alternaria. Mycol Prog 15:1–22CrossRefGoogle Scholar
  32. Maddison WP, Maddison DR (2010) Mesquite 2.74: a modular system for evolutionary analysis. Available online at: http://mesquiteproject.org
  33. Neergaard P (1945) Danish species of Alternaria and Stemphylium: taxonomy, parasitism, economical significance. Oxford University Press, London, 560 ppGoogle Scholar
  34. Nees von Esenbeck CG (1816) Das System der Pilze und Schwämme 1816/1817. Stahelsche Buchhandlung, Würzburg, 329 ppGoogle Scholar
  35. Nuray Ö (2005) Determination of the fungi responsible for black point in bread wheat and effects of the disease on emergence and seedling vigour. Trakya Univ J Sci 6(1):35–40Google Scholar
  36. Peever TL, Su G, Carpenter-Boggs L, Timmer LW (2004) Molecular systematics of citrus-associated Alternaria species. Mycologia 96:119–134CrossRefPubMedGoogle Scholar
  37. Perelló AE, Sisterna MN (2006) Leaf blight of wheat caused by Alternaria triticina in Argentina. Plant Pathol 55(2):303CrossRefGoogle Scholar
  38. Perelló A, Cordo C, Simón MR (1996) A new disease of wheat caused by Alternaria triticimaculans in Argentina. Agronomie 16(2):107–112CrossRefGoogle Scholar
  39. Perelló A, Moreno M, Sisterna M (2008) Alternaria infectoria species-group associated with black point of wheat in Argentina. Plant Pathol 57(2):379CrossRefGoogle Scholar
  40. Poursafar A, Ghosta Y, Javan-Nikkhah M (2016) A taxonomic study on Stemphylium species associated with black (sooty) head mold of wheat and barley in Iran. Mycol Iran 3(2):99–109Google Scholar
  41. Prasada R, Prabhu AS (1962) Leaf blight of wheat caused by a new species of Alternaria. Indian Phytopathol 15(3–4):292–293Google Scholar
  42. Prescott JM, Burnett PA, Saari EE, Ransom J, Bowman J, de Milliano W, Singh RP, Bekele G (1985) Wheat diseases and pests: a guide for field identification. CIMMYT, Mexico, 135 ppGoogle Scholar
  43. Pryor BM, Bigelow DM (2003) Molecular characterization of Embellisia and Nimbya species and their relationship to Alternaria, Ulocladium and Stemphylium. Mycologia 95:1141–1154CrossRefPubMedGoogle Scholar
  44. Pryor BM, Gilbertson RL (2000) Molecular phylogenetic relationships amongst Alternaria species and related fungi based upon analysis of nuclear ITS and mt SSU rDNA sequences. Mycol Res 104:1312–1321CrossRefGoogle Scholar
  45. Pryor BM, Michailides TJ (2002) Morphological, pathogenic, and molecular characterization of Alternaria isolates associated with Alternaria late blight of pistachio. Phytopathology 92:406–416CrossRefPubMedGoogle Scholar
  46. Rotem J (1994) The genus Alternaria: biology, epidemiology, and pathogenicity. APS Press, St. Paul, 326 ppGoogle Scholar
  47. Schubert K, Groenewald JZ, Braun U, Dijksterhuis J, Starink M, Hill CF, Zalar P, De Hoog GS, Crous PW (2007) Biodiversity in the Cladosporium herbarum complex (Davidiellaceae, Capnodiales), with standardisation of methods for Cladosporium taxonomy and diagnostics. Stud Mycol 58:105–156CrossRefPubMedPubMedCentralGoogle Scholar
  48. Simmons EG (1986) Alternaria themes and variations (22–26). Mycotaxon 25:287–308Google Scholar
  49. Simmons EG (1989) Macrospora Fuckel (Pleosporales) and related anamorphs. Sydowia 41:314–329Google Scholar
  50. Simmons EG (1992) Alternaria taxonomy: current status, viewpoint, challenge. In: Chelkowski J, Visconti A (eds) Alternaria: biology, plant diseases, and metabolites. Elsevier, New York, pp 1–35Google Scholar
  51. Simmons EG (1995) Alternaria themes and variations (112–144). Mycotaxon 55:55–163Google Scholar
  52. Simmons EG (2007) Alternaria: an identification manual. CBS, Utrecht, 775 ppGoogle Scholar
  53. Simmons EG, Roberts RG (1993) Alternaria themes and variations (73). Mycotaxon 48:109–140Google Scholar
  54. Sisterna M, Sarandón S (2010) Wheat grain discoloration in Argentina: current status. Am J Plant Sci Biotechnol 3(Special Issue 1):54–64Google Scholar
  55. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  56. Thambugala KM, Wanasinghe DN, Phillips AJL, Camporesi E, Bulgakov TS, Phukhamsakda C, Ariyawansa HA, Goonasekara ID, Phookamsak R, Dissanayake A, Tennakoon DS, Tibpromma S, Chen YY, Liu ZY, Hyde KD (2017) Mycosphere notes 1–50: grass (Poaceae) inhabiting Dothideomycetes. Mycosphere 8(4):697–796CrossRefGoogle Scholar
  57. Thomma BP (2003) Alternaria spp.: from general saprophyte to specific parasite. Mol Plant Pathol 4:225–236CrossRefPubMedGoogle Scholar
  58. Webley DJ, Jackson KL (1998) Mycotoxins in cereals—a comparison between North America, Europe and Australia. In: Banks HJ, Wright EJ, Damcevski KA (eds) Stored grain in Australia. Proceedings of the Australian Postharvest Technical Conference, Canberra, 26–29 May 1998, pp 63–68Google Scholar
  59. Webley DJ, Jackson KL, Mullins JD, Hocking AD, Pitt JI (1997) Alternaria toxins in weather-damaged wheat and sorghum in the 1995–1996 Australian harvest. Aust J Agric Res 48(8):1249–1256CrossRefGoogle Scholar
  60. White TJ, Bruns T, Lee SJ, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322Google Scholar
  61. Wiese MV (1987) Compendium of wheat diseases, 2nd edn. APS Press, St. Paul, 112 ppGoogle Scholar
  62. Woudenberg JHC, Groenewald JZ, Binder M, Crous P (2013) Alternaria redefined. Stud Mycol 75:171–212CrossRefPubMedPubMedCentralGoogle Scholar
  63. Woudenberg JHC, Truter M, Groenewald JZ, Crous P (2014) Large-spored Alternaria pathogens in section Porri disentangled. Stud Mycol 79:1–47CrossRefPubMedPubMedCentralGoogle Scholar
  64. Zare L (2013) The causal agent of barley black point disease in certified seed loads in Iran. Int J Agric Crop Sci 5(4):332Google Scholar
  65. Zillinsky FJ (1983) Common diseases of small grain cereals. A guide to identification. CIMMYT, Mexico, 141 ppGoogle Scholar

Copyright information

© German Mycological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Alireza Poursafar
    • 1
  • Youbert Ghosta
    • 2
  • Alexandra S. Orina
    • 3
  • Philipp B. Gannibal
    • 3
  • Mohammad Javan-Nikkhah
    • 1
  • Daniel P. Lawrence
    • 4
  1. 1.Department of Plant Protection, College of Agriculture and Natural ResourcesUniversity of TehranKarajIran
  2. 2.Department of Plant Protection, Faculty of AgricultureUniversity of UrmiaUrmiaIran
  3. 3.Laboratory of Mycology and PhytopathologyAll-Russian Institute of Plant ProtectionSaint PetersburgRussia
  4. 4.Department of Plant PathologyUniversity of CaliforniaDavisUSA

Personalised recommendations