Mycological Progress

, Volume 17, Issue 3, pp 333–341 | Cite as

Phylogenomics of Bartheletia paradoxa reveals its basal position in Agaricomycotina and that the early evolutionary history of basidiomycetes was rapid and probably not strictly bifurcating

  • Bagdevi Mishra
  • Young-Joon Choi
  • Marco Thines
Original Article


The higher level phylogeny of fungi has been addressed in previous studies, but for those analyses, either taxon sampling or gene sampling was low, or some basal lineages important for the inference of basidiomycete phylogeny were lacking. Here, a phylogenomic analysis based on highly conserved genes and including the enigmatic species Bartheletia paradoxa from Ginkgo biloba is presented. While phylogenetic analyses including also less conserved parts of core eukaryotic genes yielded a basal position for the extremophile genus Wallemia with low support, an exclusion of highly variable parts of these genes suggested Bartheletia paradoxa as the most basal member of the Agaricomycotina, but again with low support. Network analyses suggest a network-like evolution at the base of the Basidiomycota, supported by phylogenies based on single genes and gene clusters with shared topology. When further removing noise by removing poorly resolving genes, strong but not maximum support was obtained for Bartheletia paradoxa being the sister lineage to all other Agaricomycotina. We speculate that the lack of support for the early splits in Agaricomycotina and Basidiomycota can probably be explained by rapid radiation, linked to major evolutionary developments, such as, in the case of Basidiomycota, the advent of basidia in the last common ancestor.


ABBA/BABA testing Basidiomycota Core eukaryotic genes Fungi Genomes Phylogenetic network Phylogeny 



Funding support by the LOEWE excellence initiative of the federal state of Hessen in the framework of the cluster for Integrative Fungal Research (IPF) is gratefully acknowledged. The authors are indebted to Rahul Sharma for providing gene orthologs based on the unpublished genome of Bartheletia paradoxa and to Franz Oberwinkler for contributing discussions and for input on the manuscript. This manuscript is dedicated to the memory of Robert Bauer, who initiated the study but did not live to see its conclusion.

Supplementary material

11557_2017_1349_MOESM1_ESM.pptx (4.9 mb)
ESM 1 Figure S1. Maximum likelihood tree of 67 highly conserved orthologous loci from 51 fungal species. Support values from 1000 bootstrap replicates are given as branch labels. Figure S2. Minimum evolution tree of 67 highly conserved orthologous loci from 51 fungal species. Support values based on the Shimodaira–Hasegawa (SH) test are given as branch labels. Figure S3. Bayesian inference-based tree of 67 highly conserved orthologous loci from 51 fungal species. Posterior probability values are given as branch labels. Figure S4. Bayesian species densi-tree inferred from 67 highly conserved orthologous loci from 51 fungal species. Figure S5. Maximum likelihood-based tree of eight orthologous loci from 51 fungal species. These eight loci each group Ustilaginomycotina and Pucciniomycotina together. Support values from 1000 bootstrap replicates are given as branch labels. Figure S6. Maximum likelihood-based tree of two orthologous loci from 51 fungal species. These two loci each group all species from Agaricomycotina together with Pucciniomycotina. Support values from 1000 bootstrap replicates are given as branch labels. Figure S7. Maximum likelihood-based tree of five orthologous loci from 51 fungal species. These five loci each group all species from Agaricomycotina together with Ustilaginomycotina. Support values from 1000 bootstrap replicates are given as branch labels. Figure S8. Maximum likelihood-based tree of three orthologous loci from 51 fungal species. These three loci each group Bartheletia paradoxa together with Tremellomycetes. Support values from 1000 bootstrap replicates are given as branch labels. Figure S9. Maximum likelihood-based tree of seven orthologous loci from 51 fungal species. These seven loci each group Bartheletia paradoxa together with Wallemiomycetes. Support values from 1000 bootstrap replicates are given as branch labels. Figure S10. Maximum likelihood-based tree of three orthologous loci from 51 fungal species. These three loci each group Bartheletia paradoxa as basal to all other species in Agaricomycotina. Support values from 1000 bootstrap replicates are given as branch labels. Figure S11. Maximum likelihood-based tree of four orthologous loci from 51 fungal species. These four loci each group Bartheletia paradoxa together with Agaricomycetes and Dacrymycetes. Support values from 1000 bootstrap replicates are given as branch labels. (PPTX 5024 kb)
11557_2017_1349_MOESM2_ESM.pdf (166 kb)
Table S1 Genomes included in the current study. (PDF 166 kb)
11557_2017_1349_MOESM3_ESM.pdf (23 kb)
Table S2 Number of genes supporting particular higher level splits in maximum likelihood analyses. (PDF 23 kb)
11557_2017_1349_MOESM4_ESM.docx (15 kb)
Table S3 Results of the ABBA BABA test for all loci. (DOCX 15 kb)
11557_2017_1349_MOESM5_ESM.docx (16 kb)
Table S4 Results of the ABBA BABA test for the 26 highly resolving loci. (DOCX 15 kb)


  1. Aime MC, Toome M, McLaughlin DJ (2014) Pucciniomycotina. In: McLaughlin D, Spatafora J (eds) Systematics and evolution. Part A. The Mycota, vol 7, 2nd edn. Springer-Verlag, Berlin, Heidelberg, pp 271–294CrossRefGoogle Scholar
  2. Arnaud G (1954) Mycologie concrète: genera II (suite et fin). Bulletin trimestriel de la Société Mycologique de France 69:265–306Google Scholar
  3. Battistuzzi FU, Brown A (2015) Rates of evolution under extreme and mesophilic conditions. In: Wagner D, Bakermans C (eds) Microbial evolution under extreme environments. Life in extreme environments, vol. 2. De Gruyter Verlag, Berlin, pp 247–268Google Scholar
  4. Bauer R, Oberwinkler F, Vánky K (1997) Ultrastructural markers and systematics in smut fungi and allied taxa. Can J Bot 75:1273–1314CrossRefGoogle Scholar
  5. Bauer R, Begerow D, Sampaio JP, Weiß M, Oberwinkler F (2006) The simple-septate basidiomycetes: a synopsis. Mycol Prog 5:41–66CrossRefGoogle Scholar
  6. Begerow D, Stoll M, Bauer R (2006) A phylogenetic hypothesis of Ustilaginomycotina based on multiple gene analyses and morphological data. Mycologia 98:906–916CrossRefPubMedGoogle Scholar
  7. Blackmon H, Adams RA (2015) EvobiR: tools for comparative analyses and teaching evolutionary biology.
  8. Bouckaert RR (2010) DensiTree: making sense of sets of phylogenetic trees. Bioinformatics 26:1372–1373CrossRefPubMedGoogle Scholar
  9. Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu CH, Xie D, Suchard MA, Rambaut A, Drummond AJ (2014) BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput Biol 10:e1003537CrossRefPubMedPubMedCentralGoogle Scholar
  10. Cantrell SA, Dianese JC, Fell J, Gunde-Cimerman N, Zalar P (2011) Unusual fungal niches. Mycologia 103:1161–1174Google Scholar
  11. Choleva L, Musilova Z, Kohoutova-Sediva A, Paces J, Rab P, Janko K (2014) Distinguishing between incomplete lineage sorting and genomic introgressions: complete fixation of allospecific mitochondrial DNA in a sexually reproducing fish (Cobitis; Teleostei), despite clonal reproduction of hybrids. PLoS One 9:e80641CrossRefPubMedPubMedCentralGoogle Scholar
  12. Ebersberger I, de Matos Simoes R, Kupczok A, Gube M, Kothe E, Voigt K, von Haeseler A (2012) A consistent phylogenetic backbone for the fungi. Mol Biol Evol 29:1319–1334CrossRefPubMedGoogle Scholar
  13. Green RE, Krause J, Briggs AW, Maricic T, Stenzel U, Kircher M, Patterson N, Li H, Zhai W, Fritz MH, et al. (2010) A draft sequence of the Neandertal genome. Science 328:710–722Google Scholar
  14. Heled J, Drummond AJ (2010) Bayesian inference of species trees from multilocus data. Mol Biol Evol 27:570–580CrossRefPubMedGoogle Scholar
  15. Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson OE, Huhndorf S, James T, Kirk PM, Lücking R, Thorsten Lumbsch H, Lutzoni F, Matheny PB, McLaughlin DJ, Powell MJ, Redhead S, Schoch CL, Spatafora JW, Stalpers JA, Vilgalys R, Aime MC, Aptroot A, Bauer R, Begerow D, Benny GL, Castlebury LA, Crous PW, Dai Y-C, Gams W, Geiser DM, Griffith GW, Gueidan C, Hawksworth DL, Hestmark G, Hosaka K, Humber RA, Hyde KD, Ironside JE, Kõljalg U, Kurtzman CP, Larsson K-H, Lichtwardt R, Longcore J, Miądlikowska J, Miller A, Moncalvo J-M, Mozley-Standridge S, Oberwinkler F, Parmasto E, Reeb V, Rogers JD, Roux C, Ryvarden L, Sampaio JP, Schüßler A, Sugiyama J, Thorn RG, Tibell L, Untereiner WA, Walker C, Wang Z, Weir A, Weiss M, White MM, Winka K, Yao Y-J, Zhang N (2007) A higher-level phylogenetic classification of the Fungi. Mycol Res 111:509–547CrossRefPubMedGoogle Scholar
  16. Hibbett DS, Stajich JE, Spatafora JW (2013) Toward genome-enabled mycology. Mycologia 105:1339–1349CrossRefPubMedGoogle Scholar
  17. Hibbett DS, Bauer R, Binder M, Giachini AJ, Hosaka K, Justo A, Larsson E, Larsson KH, Lawrey JD, Miettinen O, Nagy LG, Nilsson RH, Weiss M, Thorn RG (2014) Agaricomycetes. In: McLaughlin D, Spatafora J (eds) Systematics and evolution. Part A. The Mycota, vol 7, 2nd edn. Springer-Verlag, Berlin, Heidelberg, pp 373–429CrossRefGoogle Scholar
  18. Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267CrossRefPubMedGoogle Scholar
  19. James TY, Kauff F, Schoch CL, Matheny PB, Hofstetter V, Cox CJ, Celio G, Gueidan C, Fraker E, Miadlikowska J, Lumbsch HT, Rauhut A, Reeb V, Arnold AE, Amtoft A, Stajich JE, Hosaka K, Sung G-H, Johnson D, O’Rourke B, Crockett M, Binder M, Curtis JM, Slot JC, Wang Z, Wilson AW, Schüßler A, Longcore JE, O’Donnell K, Mozley-Standridge S, Porter D, Letcher PM, Powell MJ, Taylor JW, White MM, Griffith GW, Davies DR, Humber RA, Morton JB, Sugiyama J, Rossman AY, Rogers JD, Pfister DH, Hewitt D, Hansen K, Hambleton S, Shoemaker RA, Kohlmeyer J, Volkmann-Kohlmeyer B, Spotts RA, Serdani M, Crous PW, Hughes KW, Matsuura K, Langer E, Langer G, Untereiner WA, Lücking R, Büdel B, Geiser DM, Aptroot A, Diederich P, Schmitt I, Schultz M, Yahr R, Hibbett DS, Lutzoni F, McLaughlin DJ, Spatafora JW, Vilgalys R (2006) Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature 443:818–822CrossRefPubMedGoogle Scholar
  20. Jančič S, Zalar P, Kocev D, Schroers HJ, Džeroski S, Gunde-Cimerman N (2016) Halophily reloaded: new insights into the extremophilic life-style of Wallemia with the description of Wallemia hederae sp. nov. Fungal Div 76:97–118Google Scholar
  21. Katoh K, Misawa K, Kuma KI, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kirschner R, Okuda T (2013) A new species of Pseudocercospora and new record of Bartheletia paradoxa on leaves of Ginkgo biloba. Mycol Prog 12:421–426CrossRefGoogle Scholar
  23. Kück P, Longo GC (2014) FASconCAT-G: extensive functions for multiple sequence alignment preparations concerning phylogenetic studies. Front Zool 11:81CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kuramae EE, Robert V, Snel B, Weiß M, Boekhout T (2006) Phylogenomics reveal a robust fungal tree of life. FEMS Yeast Res 6:1213–1220CrossRefPubMedGoogle Scholar
  25. Kutschera VE, Bidon T, Hailer F, Rodi JL, Fain SR, Janke A (2014) Bears in a forest of gene trees: phylogenetic inference is complicated by incomplete lineage sorting and gene flow. Mol Biol Evol 31:2004–2017CrossRefPubMedPubMedCentralGoogle Scholar
  26. Li L, Stoeckert CJ Jr, Roos DS (2003) OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 13:2178–2189CrossRefPubMedPubMedCentralGoogle Scholar
  27. Lutzoni F, Kauff F, Cox CJ, McLaughlin D, Celio G, Dentinger B, Padamsee M, Hibbett D, James TY, Baloch E, Grube M, Reeb V, Hofstetter V, Schoch C, Arnold AE, Miadlikowska J, Spatafora J, Johnson D, Hambleton S, Crockett M, Shoemaker R, Sung G-H, Lücking R, Lumbsch T, O’Donnell K, Binder M, Diederich P, Ertz D, Gueidan C, Hansen K, Harris RC, Hosaka K, Lim Y-W, Matheny B, Nishida H, Pfister D, Rogers J, Rossman A, Schmitt I, Sipman H, Stone J, Sugiyama J, Yahr R, Vilgalys R (2004) Assembling the fungal tree of life: progress, classification, and evolution of subcellular traits. Am J Bot 91:1446–1480CrossRefPubMedGoogle Scholar
  28. Matheny PB, Gossmann JA, Zalar P, Kumar TKA, Hibbett DS (2006) Resolving the phylogenetic position of the Wallemiomycetes: an enigmatic major lineage of Basidiomycota. Can J Bot 84:1794–1805CrossRefGoogle Scholar
  29. Misof B, Misof K (2009) A Monte Carlo approach successfully identifies randomness in multiple sequence alignments: a more objective means of data exclusion. Syst Biol 58:21–34CrossRefPubMedGoogle Scholar
  30. Moore RT (1986) A note on Wallemia sebi. Antonie Van Leeuwenhoek 52:183–187CrossRefPubMedGoogle Scholar
  31. Padamsee M, Kumar TKA, Riley R, Binder M, Boyd A, Calvo AM, Furukawa K, Hesse C, Hohmann S, James TY, LaButti K, Lapidus A, Lindquist E, Lucas S, Miller K, Shantappa S, Grigoriev IV, Hibbett DS, McLaughlin DJ, Spatafora JW, Aime MC (2012) The genome of the xerotolerant mold Wallemia sebi reveals adaptations to osmotic stress and suggests cryptic sexual reproduction. Fungal Gen Biol 49:217–226CrossRefGoogle Scholar
  32. Parra G, Bradnam K, Korf I (2007) CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 23:1061–1067CrossRefPubMedGoogle Scholar
  33. Philippe H, Germot A (2000) Phylogeny of eukaryotes based on ribosomal RNA: long-branch attraction and models of sequence evolution. Mol Biol Evol 17:830–834CrossRefPubMedGoogle Scholar
  34. Price MN, Dehal PS, Arkin AP (2010) FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS One 5:e9490CrossRefPubMedPubMedCentralGoogle Scholar
  35. Prillinger H, Oberwinkler F, Umile C, Tlachac K, Bauer R, Dörfler C, Taufratzhofer E (1993) Analysis of cell wall carbohydrates (neutral sugars) from ascomycetous and basidiomycetous yeasts with and without derivatization. J Gen Appl Microbiol 39:1–34CrossRefGoogle Scholar
  36. Rambaut A, Drummond AJ (2009) Tracer version 1.5 [computer program]. Accessed 22 Nov 2016
  37. Rambaut A, Drummond AJ (2010) TreeAnnotator version 1.6.1 [computer program]. Accessed 22 Nov 2016
  38. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542CrossRefPubMedPubMedCentralGoogle Scholar
  39. Scheuer C, Bauer R, Lutz M, Stabentheiner E, Mel’nik VA, Grube M (2008) Bartheletia paradoxa is a living fossil on Ginkgo leaf litter with a unique septal structure in the Basidiomycota. Mycol Res 112:1265–1279CrossRefPubMedGoogle Scholar
  40. Sharma R, Gassel S, Steiger S, Xia X, Bauer R, Sandmann G, Thines M (2015) The genome of the basal agaricomycete Xanthophyllomyces dendrorhous provides insights into the organization of its acetyl-CoA derived pathways and the evolution of Agaricomycotina. BMC Genomics 16:233CrossRefPubMedPubMedCentralGoogle Scholar
  41. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313CrossRefPubMedPubMedCentralGoogle Scholar
  42. Suh A, Smeds L, Ellegren H (2015) The dynamics of incomplete lineage sorting across the ancient adaptive radiation of neoavian birds. PLoS Biol 13:e1002224CrossRefPubMedPubMedCentralGoogle Scholar
  43. Swann EC, Taylor JW (1993) Higher taxa of Basidiomycetes: an 18S rRNA gene perspective. Mycologia 85:923–936CrossRefGoogle Scholar
  44. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  45. Tan G, Muffato M, Ledergerber C, Herrero J, Goldman N, Gil M, Dessimoz C (2015) Current methods for automated filtering of multiple sequence alignments frequently worsen single-gene phylogenetic inference. Syst Biol 64:778–791CrossRefPubMedPubMedCentralGoogle Scholar
  46. Toome M, Ohm RA, Riley RW, James TY, Lazarus KL, Henrissat B, Albu S, Boyd A, Chow J, Clum A, Heller G, Lipzen A, Nolan M, Sandor L, Zvenigorodsky N, Grigoriev IV, Spatafora JW, Aime MC (2014) Genome sequencing provides insight into the reproductive biology, nutritional mode and ploidy of the fern pathogen Mixia osmundae. New Phytol 202:554–564CrossRefPubMedGoogle Scholar
  47. van Driel KGA, Humbel BM, Verkleij AJ, Stalpers J, Müller WH, Boekhout T (2009) Septal pore complex morphology in the Agaricomycotina (Basidiomycota) with emphasis on the Cantharellales and Hymenochaetales. Mycological Research 113:559–576Google Scholar
  48. Wang QM, Theelen B, Groenewald M, Bai FY, Boekhout T (2014) Moniliellomycetes and Malasseziomycetes, two new classes in Ustilaginomycotina. Persoonia 33:41–47CrossRefPubMedPubMedCentralGoogle Scholar
  49. Weiß M, Bauer R, Begerow D (2004) Spotlights on heterobasidiomycetes. In: Agerer R, Piepenbring M, Blanz P (eds) Frontiers in Basidiomycote mycology. IHW-Verlag & Verlagsbuchhandlung, Eching, Germany, pp 7–48Google Scholar
  50. Weiß M, Bauer R, Sampaio JP and Oberwinkler F (2014) Tremellomycetes and related groups. In: D.J. McLaughlin and J.W. Spatafora (Eds), Systematics and Evolution. The Mycota XII Part A. 2nd Edition. Springer-Verlag, Berlin, pp 331–355Google Scholar
  51. Zajc J, Liu YF, Dai WK, Yang ZY, Hu JZ, Gostinčar C, Gunde-Cimerman N (2013) Genome and transcriptome sequencing of the halophilic fungus Wallemia ichthyophaga: haloadaptations present and absent. BMC Genomics 14:617CrossRefPubMedPubMedCentralGoogle Scholar
  52. Zajc J, Kogej T, Galinski EA, Ramos J, Gunde-Cimerman N (2014) Osmoadaptation strategy of the most halophilic fungus, Wallemia ichthyophaga, growing optimally at salinities above 15% NaCl. Appl Environ Microbiol 80:247–256CrossRefPubMedPubMedCentralGoogle Scholar
  53. Zalar P, Sybren de Hoog G, Schroers H-J, Frank JM, Gunde-Cimerman N (2005) Taxonomy and phylogeny of the xerophilic genus Wallemia (Wallemiomycetes and Wallemiales, cl. et ord. nov.). Antonie Van Leeuwenhoek 87:311–328CrossRefPubMedGoogle Scholar

Copyright information

© German Mycological Society and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Bagdevi Mishra
    • 1
    • 2
    • 3
  • Young-Joon Choi
    • 1
    • 2
    • 4
  • Marco Thines
    • 1
    • 2
    • 3
    • 5
  1. 1.Biodiversity and Climate Research Centre (BiK-F)Frankfurt (Main)Germany
  2. 2.Department for Biological Sciences, Institute of Ecology, Evolution and DiversityGoethe UniversityFrankfurt (Main)Germany
  3. 3.Senckenberg Gesellschaft für NaturforschungFrankfurt (Main)Germany
  4. 4.Department of Biology, College of Natural SciencesKunsan National UniversityGunsanSouth Korea
  5. 5.Cluster for Integrative Fungal Research (IPF)Frankfurt (Main)Germany

Personalised recommendations