Instant water body variation detection via analysis on remote sensing imagery

Abstract

Water resource is one of the most valuable natural resources for human beings, which requires to be monitored for careful protection. Inspired by a significant power of machine learning methods, researchers have successfully developed many applications to automatically perform identification on the water body via analyzing remote sensing images. Since a similar category of ground objects could show a large difference in spectral representation, researchers try to propose distinctive and effective features to offer redundant information for category classification. Moreover, large amount of high-resolution remote sensing images require analyzing algorithms to be parallel processed for instant feedback. Based on these requirements, we propose a novel water body variation detection via analysis on remote sensing images. Specifically, the proposed method firstly perform pixel-level classification to locate abnormal changes with thoughts of visual word patterns. Afterwards, the proposed method proposes block division method to construct parallel running version with Mapreduce structure. With high representational and parallel running abilities, the proposed method is capable to accurately detect variation areas on remote sensing images with instant feedback. Experiments on several self-collected datasets show the proposed method has achieved better efficiencies than comparative studies.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Xiaolong, X., Zhang, X., Gao, H., Xue, Y., Qi, L., Dou, W.: Become: blockchain-enabled computation offloading for IoT in mobile edge computing. IEEE Trans. Ind. Inform. 16(6), 4187–4195 (2020)

    Article  Google Scholar 

  2. 2.

    Qi, L., Zhang, X., Li, S., Wan, S., Wen, Y., Gong, W.: Spatial-temporal data-driven service recommendation with privacy-preservation. Inf. Sci. 515, 91–102 (2020)

    Article  Google Scholar 

  3. 3.

    Zhang, Y., Liu, X., Zhang, Y., Ling, X., Huang, X.: Automatic and unsupervised water body extraction based on spectral-spatial features using gf-1 satellite imagery. IEEE Geosci. Remote Sens. Lett. 16(6), 927–931 (2019)

    Article  Google Scholar 

  4. 4.

    Kai, J., Jiang, W., Jing, L., Tang, Z.: Spectral matching based on discrete particle swarm optimization: a new method for terrestrial water body extraction using multi-temporal landsat 8 images. Remote Sens. Environ. 209, 1–18 (2018)

    Article  Google Scholar 

  5. 5.

    Wang, N., Jing, W., Li, L.: An improved distributed storage model of remote sensing images based on the hdfs and pyramid structure. Int. J. Comput. Appl. Technol. 59(2), 142 (2019)

    Article  Google Scholar 

  6. 6.

    Wang, P., Wang, J., Chen, Y., Ni, G.: Rapid processing of remote sensing images based on cloud computing. Future Gener. Comput. Syst. 29(8), 1963–1968 (2013)

    Article  Google Scholar 

  7. 7.

    Luo, B., Jiang, S., Zhang, L.: Indexing of remote sensing images with different resolutions by multiple features. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 6(4), 1899–1912 (2013)

    Article  Google Scholar 

  8. 8.

    Han-Qiu, X.U.: A study on information extraction of water body with the modified normalized difference water index (MNDWI). J remote sens. 5, 589–595 (2005)

    Google Scholar 

  9. 9.

    Haipeng, L.: Prediction and analysis of chaotic time series on the basis of support vector. Electron. J. Syst. Eng. 19(4), 806–811 (2008)

    Article  Google Scholar 

  10. 10.

    Ozturk, C.N., Bilgin, G.: A comparative study on manifold learning of hyperspectral data for land cover classification. In: Sixth International Conference on Graphic and Image Processing (ICGIP 2014), vol. 9443, p. 94431L. International Society for Optics and Photonics (2015)

  11. 11.

    Feng, X.U., Cheng, H.U., Jun, L.I., Plaza, A., Datcu, M.: Special focus on deep learning in remote sensing image processing. Sci. China 063(004), P.1–P.2 (2020)

    Google Scholar 

  12. 12.

    Mnih, V., Hinton, G.E.: Learning to detect roads in high-resolution aerial images. In: European Conference on Computer Vision, pp. 210–223. Springer (2010)

  13. 13.

    Chaib, S., Liu, H., Yanfeng, G., Yao, H.: Deep feature fusion for VHR remote sensing scene classification. IEEE Trans. Geosci. Remote Sens. 55(8), 4775–4784 (2017)

    Article  Google Scholar 

  14. 14.

    Paisitkriangkrai, S., Sherrah, J., Janney, P., Hengel, V.-D., et al.: Effective semantic pixel labelling with convolutional networks and conditional random fields. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 36–43 (2015)

  15. 15.

    Hu, Y., Cahill, N.D., Messinger, D.W.: Low-dimensional representations of hyperspectral data for use in CRF-based classification. In: Image and Signal Processing for Remote Sensing XXI (2015)

  16. 16.

    Zhao, W., Du, S., Wang, Q., Emery, W.J.: Contextually guided very-high-resolution imagery classification with semantic segments. ISPRS J. Photogramm. Remote Sens. 132, 48–60 (2017)

    Article  Google Scholar 

  17. 17.

    Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2881–2890 (2017)

  18. 18.

    Sun, W., Wang, R.: Fully convolutional networks for semantic segmentation of very high resolution remotely sensed images combined with dsm. IEEE Geosci. Remote Sens. Lett. 15(3), 474–478 (2018)

    Article  Google Scholar 

  19. 19.

    Wang, Q., Liu, S., Chanussot, J., Li, X.: Scene classification with recurrent attention of VHR remote sensing images. IEEE Trans. Geosci. Remote Sens. 57(2), 1155–1167 (2018)

    Article  Google Scholar 

  20. 20.

    Sun, Y., Lei, L., Li, X., Sun, H., Kuang, G.: Nonlocal patch similarity based heterogeneous remote sensing change detection. Pattern Recognit. 109, 107598 (2021)

    Article  Google Scholar 

  21. 21.

    Hua, X., Wang, X., Rui, T., Zhang, H., Wang, D.: A fast self-attention cascaded network for object detection in large scene remote sensing images. Appl. Soft Comput. 94, 106495 (2020)

    Article  Google Scholar 

  22. 22.

    Cheng, G., Yang, C., Yao, X., Guo, L., Han, J.: When deep learning meets metric learning: remote sensing image scene classification via learning discriminative CNNs. IEEE Trans. Geosci. Remote Sens. 56(5), 2811–2821 (2018)

    Article  Google Scholar 

  23. 23.

    Zhang, J., Chaoquan, L., Li, X., Kim, H.-J., Wang, J.: A full convolutional network based on densenet for remote sensing scene classification. Math. Biosci. Eng 16(5), 3345–3367 (2019)

    Article  Google Scholar 

  24. 24.

    Alahmadi, A., Joorabchi, A., Mahdi, A.E.: Combining bag-of-words and bag-of-concepts representations for arabic text classification. In: Irish Signals and Systems Conference and China–Ireland International Conference on Information and Communications Technologies (2014)

  25. 25.

    Zhao, L.-J., Tang, P., Huo, L.-Z.: Land-use scene classification using a concentric circle-structured multiscale bag-of-visual-words model. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7(12), 4620–4631 (2014)

    Article  Google Scholar 

  26. 26.

    Wang, Q., Wan, S., Yue, L., Che, W.: Visual attention based bag-of-words model for image classification. In: Sixth International Conference on Digital Image Processing (2014)

  27. 27.

    Karakasis, E.G., Amanatiadis, A., Gasteratos, A., Chatzichristofis, S.A.: Image moment invariants as local features for content based image retrieval using the bag-of-visual-words model. Pattern Recognit. Lett. 55, 22–27 (2015)

    Article  Google Scholar 

  28. 28.

    Jinying, Z.H.A.N.G., Guanghu, Y.A.O., Lin, L.I.N., Huaixuan, G.U.O.: Automatic classification of gf-2 remote sensing imagery based on active learning and bag of visual words model. Bull. Surv. Mapp. 2, 103 (2019)

    Google Scholar 

  29. 29.

    Peng, X., Wang, L., Wang, X., Yu, Q.: Bag of visual words and fusion methods for action recognition: comprehensive study and good practice. Comput. Vis. Image Underst. 150, 109–125 (2016)

    Article  Google Scholar 

  30. 30.

    Huo, L.: Land-use scene classification using a concentric circle-structured multiscale bag-of-visual-words model. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7(12), 4620–4631 (2014)

    Article  Google Scholar 

  31. 31.

    Zhang, J., Li, T., Lu, X., Cheng, Z.: Semantic classification of high-resolution remote-sensing images based on mid-level features. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9(6), 2343–2353 (2016)

    Article  Google Scholar 

  32. 32.

    Zhang, L., Jing, Z., Zhang, D., Hou, X., Gang, Y.: Urban road extraction from high-resolution remote sensing images based on semantic model. In: The 18th International Conference on Geoinformatics: GIScience in Change, Geoinformatics 2010, 18–20 June, 2010. Peking University, Beijing, China (2010)

  33. 33.

    Lambin, E.F., Strahlers, A.H.: Change-vector analysis in multitemporal space: a tool to detect and categorize land-cover change processes using high temporal-resolution satellite data. Remote Sens. Environ. 48(2), 231–244 (1994)

    Article  Google Scholar 

  34. 34.

    Qi, L., Chen, Y., Yuan, Y., Shucun, F., Zhang, X., Xiaolong, X.: A QoS-aware virtual machine scheduling method for energy conservation in cloud-based cyber-physical systems. World Wide Web 23(2), 1275–1297 (2020)

    Article  Google Scholar 

  35. 35.

    Wang, R., Liu, Z., Chen, B.: Design and implementation of a decentralized selfcoordinating distributed remote sensing image processing system. In: Proceedings of Spie, 7146 (2009)

  36. 36.

    Wei, L., Li, P., Zhang, L., Zhong, Y.: An advanced change detection method based on object-oriented classification of multi-band remote sensing image. In: International Conference on Geoinformatics (2010)

  37. 37.

    Li, X.B., Zhou, Q.: A lossless data hiding transmission method for satellite remote sensing image based on histogram modification. J. Astronaut. 34(5), 686–692 (2013)

    Google Scholar 

  38. 38.

    Shijin, L.I., Wang, S., Huang, L.: Change detection with remote sensing images based on forward-backward heterogenicity. J. Shandong Univ. 48(03), 1–9 (2018)

    Google Scholar 

  39. 39.

    Xu, X., Shen, B., Yin, X., Khosravi, M.R., Wu, H., Qi, L., Wan, S.: Edge server quantification and placement for offloading social media services in industrial cognitive IoV. IEEE Trans. Ind. Inform. (2020)

  40. 40.

    Xu, X., Zhang, X., Liu, X., Jiang, J., Qi, L., Zakirul Alam Bhuiyan, Md.: Adaptive computation offloading with edge for 5g-envisioned internet of connected vehicles. IEEE Trans. Intell. Transp. Syst. 1–10 (2020)

  41. 41.

    Qi, L., He, Q., Chen, F., Zhang, X., Dou, W., Ni, Q.: Data-driven web APIs recommendation for building web applications. IEEE Trans. Big Data 1 (2020)

Download references

Acknowledgements

Funding This work was supported by National Key R\&D Program of China under Grant 2018YFC0407901, the Fundamental Research Funds for the Central Universities under Grant B200202177, and the National Natural Science Foundation of China under Grant 61702160.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yirui Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Han, P. & Zheng, Z. Instant water body variation detection via analysis on remote sensing imagery. J Real-Time Image Proc (2021). https://doi.org/10.1007/s11554-020-01062-y

Download citation

Keywords

  • Real-time RS applications of detection and estimation theory
  • Remote sensing images
  • Water body variation detection method
  • Distributed processing