Fast image encryption algorithm with high security level using the Bülban chaotic map

Abstract

In the last decades, a big number of image encryption schemes have been proposed. Most of these schemes reach a high-security level, however, their slow speeds due to their complex process make them unusable in real-time applications. Motivated by this, we propose a new efficient and high-speed image encryption scheme based on the Bülban chaotic map. Unlike most of the existing schemes, we make a wisely use of this simple chaotic map to generate only a few numbers of random rows and columns. Moreover, to further increase the speed, we raise the processing unit from the pixel level to the row/column level. Security of the new scheme is achieved through a substitution-permutation network, where we apply a circular shift of rows and columns to break the strong correlation of adjacent pixels. Then, we combine the XOR operation with the Modulo function to mask the pixels values and prevent any leak of information. High-security tests and simulation analysis have been carried out to demonstrate that the scheme is extremely secure and highly fast for real-time image processing at 80 fps (frames per second).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    PUB 46-3: FIPS. Data encryption standard (DES). Natl. Inst. Std. Technol. 25(10), 1–22 (1999)

  2. 2.

    Fips-Pub, N.I.S.T.: Advanced encryption standard (AES). Federal Inf. Process. Std. Publ. 197(441), 0311 (2001)

    Google Scholar 

  3. 3.

    Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and publickey cryptosystems. Commun. ACM 21(2), 120–126 (1978)

    MATH  Article  Google Scholar 

  4. 4.

    Azzaz, M.S., Tanougast, C., Sadoudi, S., Dandache, A.: Robust chaotic key stream generator for real-time images encryption. J. Real-time Image Process. 8(3), 297–306 (2013)

    MATH  Article  Google Scholar 

  5. 5.

    Çavuşoğlu, Ü., Kaçar, S., Pehlivan, I., Zengin, A.: Secure image encryption algorithm design using a novel chaos based S-Box. Chaos Solitons Fractals 95, 92–101 (2017)

    MATH  Article  Google Scholar 

  6. 6.

    Zhang, Y.: The unified image encryption algorithm based on chaos and cubic S-Box. Inf. Sci. 450, 361–377 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  7. 7.

    Zhen, P., Zhao, G., Min, L., Jin, X.: Chaos-based image encryption scheme combining dna coding and entropy. Multimed. Tools Appl. 75(11), 6303–6319 (2016)

    Article  Google Scholar 

  8. 8.

    Zhang, Q., Xue, X., Wei, X.: A novel image encryption algorithm based on DNA subsequence operation. Sci. World J. 1–10, 2012 (2012)

    Google Scholar 

  9. 9.

    Zhang, Q., Zhou, S., Wei, X.: An efficient approach for DNA fractal-based image encryption. Appl. Math. Inf. Sci 5(3), 445–459 (2011)

    MathSciNet  Google Scholar 

  10. 10.

    Yu-Guang Yang, J., Tian, H.L., Zhou, Y.-H., Shi, W.-M.: Novel quantum image encryption using one-dimensional quantum cellular automata. Inf. Sci. 345, 257–270 (2016)

    Article  Google Scholar 

  11. 11.

    Yang, Y.-G., Xia, J., Jia, X., Zhang, H.: Novel image encryption/decryption based on quantum Fourier transform and double phase encoding. Quant. Inf. Process. 12(11), 3477–3493 (2013)

    MathSciNet  MATH  Article  Google Scholar 

  12. 12.

    Zhou, R.-G., Qian, W., Zhang, M.-Q., Shen, C.-Y.: Quantum image encryption and decryption algorithms based on quantum image geometric transformations. Int. J. Theor. Phys. 52(6), 1802–1817 (2013)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Zhang, X., Feng, G., Ren, Y., Qian, Z.: Scalable coding of encrypted images. IEEE Trans. Image Process. 21(6), 3108–3114 (2012)

    MathSciNet  MATH  Article  Google Scholar 

  14. 14.

    Qin, C., Zhou, Q., Cao, F., Dong, J., Zhang, X.: Flexible lossy compression for selective encrypted image with image inpainting. IEEE Trans. Circ. Syst. Video Technol. (2018)

  15. 15.

    Duan, X., Liu, J., Zhang, E.: Efficient image encryption and compression based on a vae generative model. J. Real-Time Image Process, 1–9 (2018)

  16. 16.

    Wang, X., Zhao, J., Zhang, Z.: A chaotic cryptosystem based on multi-one-dimensional maps. Mod. Phys. Lett. B 23(02), 183–189 (2009)

    MATH  Article  Google Scholar 

  17. 17.

    Meng, J., Wang, X.: Generalized projective synchronization of a class of delayed neural networks. Mod. Phys. Lett. B 22(03), 181–190 (2008)

    MATH  Article  Google Scholar 

  18. 18.

    Li, F., Wu, H., Zhou, G., Wei, W.: Robust real-time image encryption with aperiodic chaotic map and random-cycling bit shift. J. Real-Time Image Process, 1–16 (2018)

  19. 19.

    Sui, L., Duan, K., Liang, J., Hei, X.: Asymmetric double-image encryption based on cascaded discrete fractional random transform and logistic maps. Opt. Express. 22(9), 10605–10621 (2014)

    Article  Google Scholar 

  20. 20.

    Hua, Z., Zhou, Y., Pun, C.-M., Chen, C.L.P.: 2d Sine logistic modulation map for image encryption. Inf. Sci. 297, 80–94 (2015)

    Article  Google Scholar 

  21. 21.

    Natiq, H., Al-Saidi, N.M.G., Said, M.R.M., Kilicman, A.: A new hyperchaotic map and its application for image encryption. Eur. Phys. J. Plus 133(1), 6 (2018)

    Article  Google Scholar 

  22. 22.

    Wu, J., Liao, X., Yang, B.: Image encryption using 2d Hénon-sine map and DNA approach. Signal Process. (018)

  23. 23.

    Li, C., Luo, G., Qin, K., Li, C.: An image encryption scheme based on chaotic tent map. Nonlinear Dyn. 87(1), 127–133 (2017)

    Article  Google Scholar 

  24. 24.

    Luo, Y., Cao, L., Qiu, S., Lin, H., Harkin, J., Liu, J.: A chaotic map-control-based and the plain image-related cryptosystem. Nonlinear Dyn. 83(4), 1–18 (2015)

    MathSciNet  MATH  Google Scholar 

  25. 25.

    Chen, G., Mao, Y., Chui, C.K.: A symmetric image encryption scheme based on 3d chaotic cat maps. Chaos Solitons Fractals 21(3), 749–761 (2004)

    MathSciNet  MATH  Article  Google Scholar 

  26. 26.

    Musanna, F., Kumar, S.: A novel fractional order chaos-based image encryption using Fisher Yates algorithm and 3-D cat map. Multimed. Tools Appl. (2018)

  27. 27.

    Dadras, S., Momeni, H.R., Qi, G.: Analysis of a new 3d smooth autonomous system with different wing chaotic attractors and transient chaos. Nonlinear Dyn. 62(1–2), 391–405 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  28. 28.

    Zhang, J., Tang, W.: A novel bounded 4d chaotic system. Nonlinear Dyn. 67(4), 2455–2465 (2012)

    MathSciNet  MATH  Article  Google Scholar 

  29. 29.

    Ye, Z., Deng, C.: Adaptive synchronization to a general non-autonomous chaotic system and its applications. Nonlinear Anal. Real World Appl. 13(2), 840–849 (2012)

    MathSciNet  MATH  Article  Google Scholar 

  30. 30.

    Xiangjun, W., Wang, H.: A new chaotic system with fractional order and its projective synchronization. Nonlinear Dyn. 61(3), 407–417 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  31. 31.

    Alpar, O.: Analysis of a new simple one dimensional chaotic map. Nonlinear Dyn. 78(2), 771–778 (2014)

    MathSciNet  Article  Google Scholar 

  32. 32.

    Jun-an, L., Xiaoqun, W., Lü, J., Kang, L.: A new discrete chaotic system with rational fraction and its dynamical behaviors. Chaos Solitons Fractals 22(2), 311–319 (2004)

    MathSciNet  MATH  Article  Google Scholar 

  33. 33.

    Belazi, A., El-Latif, A.A.A., Belghith, S.: A novel image encryption scheme based on substitution-permutation network and chaos. Signal Process. 128, 155–170 (2016)

    Article  Google Scholar 

  34. 34.

    IEEE standard for binary floating-point arithmetic. Institute of Electrical and Electronics Engineers, New York (1985)

  35. 35.

    Shannon, C.E.: Communication theory of secrecy systems*. Bell Syst. Tech. J. 28(4), 656–715 (1949)

    MathSciNet  MATH  Article  Google Scholar 

  36. 36.

    Liu, L., Miao, S.: A new simple one-dimensional chaotic map and its application for image encryption. Multimed. Tools Appl. 1, 1–18 (2018)

    Google Scholar 

  37. 37.

    Hua, Z., Jin, F., Xu, B., Huang, H.: 2d logistic-sine-coupling map for image encryption. Signal Process. 149 (2018)

  38. 38.

    Liu, L., Miao, S., Hanping, H., Cheng, M.: N-phase logistic chaotic sequence and its application for image encryption. IET Signal Proc. 10(9), 1096–1104 (2017)

    Article  Google Scholar 

  39. 39.

    Wang, X., Feng, L., Li, R., Zhang, F.: A fast image encryption algorithm based on non-adjacent dynamically coupled map lattice model. Nonlinear Dyn. 1–28, (2019)

  40. 40.

    Tang, J., Yu, Z., Liu, L.: A delay coupling method to reduce the dynamical degradation of digital chaotic maps and its application for image encryption. Multimed. Tools Appl. 1–24 (2019)

  41. 41.

    Yue, W., Zhou, Y., Saveriades, G., Agaian, S., Noonan, J.P., Natarajan, P.: Local Shannon entropy measure with statistical tests for image randomness. Inf. Sci. 222, 323–342 (2013)

    MathSciNet  MATH  Article  Google Scholar 

  42. 42.

    Castro, J.C.H., Sierra, J.M., Seznec, A., Izquierdo, A., Ribagorda, A.: The strict avalanche criterion randomness test. Math. Comput. Simul. 68(1), 1–7 (2005)

    MathSciNet  MATH  Article  Google Scholar 

  43. 43.

    Asim, M., Jeoti, V.: On improving an image encryption scheme based on chaotic logistic map. In: 2007 International Conference on Intelligent and Advanced Systems, pp. 758–763. IEEE (2007)

  44. 44.

    Biham, E., Shamir, A.: Differential cryptanalysis of des-like cryptosystems. J. Cryptol. 4(1), 3–72 (1991)

    MathSciNet  MATH  Article  Google Scholar 

  45. 45.

    Matsui, M.: Linear cryptanalysis method for des cipher. In: Workshop on the Theory and Application of of Cryptographic Techniques. Springer, pp. 386–397 (1993)

  46. 46.

    Alvarez, G., Shujun, L.: Some basic cryptographic requirements for chaos-based cryptosystems. Int. J. Bifur. Chaos 16(08), 2129–2151 (2006)

    MathSciNet  MATH  Article  Google Scholar 

  47. 47.

    Stallings, W.: Cryptography and network security: principles and practice. Int. J. Eng. Comput. Sci. 01(01), 121–136 (2012)

    Google Scholar 

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China (no.: 61672124), the Password Theory Project of the 13th Five-Year Plan National Cryptography Development Fund (no.: MMJJ20170203), Liaoning Province Science and Technology Innovation Leading Talents Program Project (no.: XLYC1802013), Key R&D Projects of Liaoning Province (no.: 2019020105-JH2/103), Jinan City ‘20 universities’ Funding Projects Introducing Innovation Team Program (no.: 2019GXRC031).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mohamed Zakariya Talhaoui.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Talhaoui, M.Z., Wang, X. & Midoun, M.A. Fast image encryption algorithm with high security level using the Bülban chaotic map. J Real-Time Image Proc 18, 85–98 (2021). https://doi.org/10.1007/s11554-020-00948-1

Download citation

Keywords

  • Image encryption
  • Bülban map
  • Chaos theory
  • Real-time communication