Skip to main content

Advertisement

Log in

A high throughput two-dimensional discrete cosine transform and MPEG4 motion estimation using vector coprocessor

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

In this work a configurable and scalable vector coprocessor for real time processing of MPEG4 motion estimation (ME) and two-dimensional DCT (2D DCT) is presented. A sequential DSP processor based on a reduced instruction set computer (RISC) processor architecture would require a frequency of 15 GHz for the real time processing of these two processes for a common intermediate format (CIF) sized sequence at 25 frames per second (fps). This frequency requirement will increase further if the image dimensions are increased. On the other hand our architecture on FPGA can achieve the real time processing rate at low frequency for CIF sized sequence and at higher frequency for full high definition (FHD) sequence for combined ME and 2D DCT. Due to configurable nature of the architecture and FPGA, this can be extended to higher dimensional image sequences. An important aspect of the architecture is that same datapath that is used for ME is also used for 2D DCT, with minor modification, leading to saving in area and time consumption. In addition the processor–coprocessor architecture has lower energy consumption and cost than the sequential processor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kuhn, P.: Algorithms, complexity analysis and VLSI architectures for MPEG4 motion estimation. Kluwer Academic Publishers, Dordrecht (2003)

    Google Scholar 

  2. Khemiri, R., Kibeya, H., Loukil, H., Sayadi, F.E., Atri, M., Masmoudi, N.: Real-time motion estimation diamond search algorithm for the new high efficiency video coding on FPGA. Analog Integr. Circ. Signal Process. 94, 259 (2018)

    Article  Google Scholar 

  3. Elhamzi, W., Dubois, J., Miteran, J., Atri, M.: An efficient low-cost FPGA implementation of a configurable motion estimation for H.264 video coding. J. Real Time Image Proc. 9, 19 (2014)

    Article  Google Scholar 

  4. Sanchez, G., Zatt, B., Porto, M., Agostini, L.: Hardware-friendly HEVC motion estimation: new algorithms and efficient VLSI designs targeting high definition videos. Analog Integr. Circ. Signal Process. 82, 135 (2015)

    Article  Google Scholar 

  5. Ndili, O., Ogunfunmi, T.: Algorithm and architecture co-design of hardware-oriented, modified diamond search for fast motion estimation in H.264/AVC. IEEE Trans. Circ. Syst. Video Technol. 21, 1214 (2011)

    Article  Google Scholar 

  6. Urban, F., Deforges, O., Nezan, J.F.: In: SPIE Optics + Photonics, p. 849917. San Diego, United States (2012)

  7. Urban, F., Nezan, J.F., Raulet, M.: HDS, a real-time multi-DSP motion estimator for MPEG-4 H.264 AVC high definition video encoding. J. Real Time Image Proc. 4, 23 (2009)

    Article  Google Scholar 

  8. Li, D.X., Zheng, W., Zhang, M.: Architecture design for H.264/AVC integer motion estimation with minimum memory bandwidth. IEEE Trans. Consum. Electron. 53, 1053 (2007)

    Article  Google Scholar 

  9. Fukazawa, Y., Watanabe, K., Minoura, Y., Kondo, T., Sasaki, T.: In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1031–1035. Shanghai, China (2016)

  10. Huayi, L., MaLini, L. Hai: In: 2010 Second International Conference on Communication Systems, Networks and Applications, pp. 239–244. Hong Kong, China (2010)

  11. Sayed, M.: In: 16th IEEE International Conference on Electronics, Circuits and Systems, pp. 787–790. Yasmine Hammamet, Tunisia (2009)

  12. Babionitakis, K., Doumenis, G.A., Georgakarakos, G., Lentaris, G., Nakos, K., Reisis, D., et al.: A real-time motion estimation FPGA architecture. J. Real Time Image Process. 3, 3 (2008)

    Article  Google Scholar 

  13. Chouliaras, V.A., Dwyer, V.M., Agha, S.: In: Proceedings of ACIVS 2005, p. 2005. Antwer, Belgium (2005)

  14. Chouliaras, V.A., Agha, S., Jacobs, T.R., Dwyer, V.M.: Quantifying the benefit of thread and data parallelism for fast motion estimation in MPEG-2. IEE Electron. Lett. 42, 747 (2006)

    Article  Google Scholar 

  15. Chouliaras, V.A., Nunez-Yanez, J.L., Agha, S.: In: Proceedings IASTED (SIP), pp. 298–303. Honolulu, Hawaii (2004)

  16. Chouliaras, V.A., Dwyer, V.M., Agha, S., Nunez-Yanez, J.L., Reisis, D., Nakos, K., et al.: Customization of an embedded RISC CPU with SIMD extensions for video encoding. A case study. Integr. VLSI J. 41, 135 (2008)

    Article  Google Scholar 

  17. Chouliaras, V.A., Nunez, J.L., Mulvaney, D.J., Rovati, F., Alfonso, D.: A multi-standard video coding accelerator based on a vector architecture. IEEE Trans. Consum. Electron. 5, 160 (2005)

    Article  Google Scholar 

  18. Chen, Y.H., Chen, T.C., Tsai, C.Y., Tsai, S.F., Chen, L.G.: Data reuse exploration for low power motion estimation architecture design in H.264 encoder. J. Signal Process. Syst. 50, 1 (2008)

    Article  Google Scholar 

  19. Dwyer, V.M., Agha, S., Chouliaras, V.: In: Proceedings of Mirage 2005 Conference, pp. 191–196. Versailles, France (2005)

  20. Dwyer, V.M., Agha, S., Chouliaras, V.A.: in Proceedings of ACIVS 2005 Conference, pp. 372–380. Antwerp, Belgium (2005)

  21. Agha, S., Dwyer, V.M., Chouliaras, V.: Motion estimation with low resolution distortion metric. IEE Electron. Lett. 41, 693 (2005)

    Article  Google Scholar 

  22. Agha, S., Khan, S.A., Malik, S., Riaz, R.A.: Reduced bit low power VLSI architectures for motion estimation. J. Syst. Eng. Electron. 24, 382 (2013)

    Article  Google Scholar 

  23. Agha, S., Jan, F., Sabir, D., Saleem, K., Gulzari, U., Shakeel, A.: In: proceedings of the 2017 IEEE International Conference on Signal and Image Processing Applications. Malaysia, Kuching (2017)

  24. Fakhari, A., Fathy, M.: In: Proceedings of International Conference on Reconfigurable Computing, pp. 115–120. Quintana Roo, Mexico (2010)

  25. Dogan, A.: In: 9th International Conference on Electrical and Electronics Engineering (ELECO), pp. 771–775. Bursa, Turkey (2015)

  26. Sjovall, P., Viitamaki, V., Vanne, J., Hamalainen, T.D.: In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1547–1551. New Orleans, LA, USA (2017)

  27. Jeong, H., Kim, J., Cho, W.K.: Low-power multiplierless DCT architecture using image correlation. IEEE Trans. Consum. Electron. 50, 262 (2004)

    Article  Google Scholar 

  28. Ghosh, S., Venigalla, S., Bayoumi, M.: In: Proceedings of the IEEE Computer Society Annual Symposium on VLSI New Frontiers in VLSI Design, pp. 162–166. Tampa, FL (2005)

  29. Lee, M.W., Yoon, J.H., Park, J.: Reconfigurable CORDIC-based low-power DCT architecture based on data priority. IEEE Trans. Very Large Scale Integr. VLSI Syst. 22, 1060 (2013)

    Google Scholar 

  30. Mpeg compression standard. mpeg.chiariglione.org

  31. Parhi, K.K.: VLSI Digit. Signal Process. Syst. Des. Implement. Wiley, Noida (2008)

    Google Scholar 

  32. Sparc v8 processor architecture. http://www.gaisler.com/index.php/products/processors

  33. Mano, M.M.: Computer System Architecture. Dorling Kindersley, Noida (2008)

    MATH  Google Scholar 

  34. Holub, A.I.: Compiler Design in C. Prentice Hall, University of Michigan, Upper Saddle River (1990)

    MATH  Google Scholar 

  35. Matlab. www.mathworks.com

  36. Xilinx synthesis tools. www.xilinx.com

  37. Mentor graphics. www.mentor.com

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahrukh Agha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Pseudocode for Vectorized 2D DCT

figure b

Appendix B

Pseudocode for Vectorized ME

figure c

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agha, S., Gulzari, U.A., Shaheen, F. et al. A high throughput two-dimensional discrete cosine transform and MPEG4 motion estimation using vector coprocessor. J Real-Time Image Proc 17, 1319–1330 (2020). https://doi.org/10.1007/s11554-019-00892-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-019-00892-9

Keywords

Navigation