Advertisement

Study of infrared reflection characteristics of aerial target using MODIS data on GPU

  • Xing Guo
  • Zhensen Wu
  • Jiaji Wu
  • Yunhua Cao
Special Issue Paper

Abstract

To study of the infrared signature of an aerial target, it is required to precisely model the background radiation. Simple empirical models or standard atmospheric models in LOWTRAN/MODTRAN were used in earlier studies. To further precisely model the thermal radiation of earth’s surface and atmospheric radiance/transmittance, the atmospheric profile, land surface temperature, and emissivity, the sea surface temperature retrieved from moderate-resolution imaging spectroradiometer, and the sea surface emissivity model developed by Wu and Smith are utilized in this study. Meanwhile, considering that the reflection of background radiation incident from different directions in each spectral wavelength can be calculated in parallel, implementations using open multi-processing and compute unified device architecture on a multi-core CPU and many-core graphics processing unit (GPU) are presented and speedups of 9\(\times\) and 258\(\times\) are obtained on a platform with dual Xeon E5-2652 CPU and an NVIDIA Tesla K80 GPU card, respectively.

Keywords

Infrared reflection MODIS image Real time Parallel computation GPU 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grants 61775175, 61571355 and 61601355.

References

  1. 1.
    Acharya, P.K., Berk, A., Anderson, G.P., Anderson, G.P., Larsen, N.F., Tsay, S.C., Stamnes, K.H.: MODTRAN4: multiple scattering and bidirectional reflectance distribution function (brdf) upgrades to MODTRAN. In: SPIE’s International Symposium on Optical Science, Engineering, and Instrumentation, International Society for Optics and Photonics, pp. 354–362 (1999).  https://doi.org/10.1117/12.366389
  2. 2.
    Barnes, W.L., Pagano, T.S., Salomonson, V.V.: Prelaunch characteristics of the moderate resolution imaging spectroradiometer (MODIS) on EOS-AM1. IEEE Trans. Geosci. Remote Sens. 36(4), 1088–1100 (1998).  https://doi.org/10.1109/36.700993 CrossRefGoogle Scholar
  3. 3.
    Beier, K.: Infrared radiation model for aircraft and reentry vehicle. In: 32nd Annual Technical Symposium on International Society for Optics and Photonics, pp. 363–374 (1988).  https://doi.org/10.1117/12.948320
  4. 4.
    Bishop, G.J., Caola, M.J., Geatches, R.M., Roberts, N.C.: SIRUS spectral signature analysis code. In: International Society for Optics and Photonics AeroSense 2003, pp. 259–269 (2003).  https://doi.org/10.1117/12.487716
  5. 5.
    Borbas, E.: MODIS atmosphere L2 atmosphere profile product. NASA MODIS Adaptive Processing System, Goddard Space Flight Center (2015).  https://doi.org/10.5067/MODIS/MOD07_L2.006
  6. 6.
    Brown, O.B., Minnett, P.J., Evans, R., Kearns, E., Kilpatrick, K., Kumar, A., Sikorski, R., Závody, A.: MODIS infrared sea surface temperature algorithm algorithm theoretical basis document version 2.0. Univ. Miami 31, 09833 (1999)Google Scholar
  7. 7.
    Dagum, L., Menon, R.: OpenMP: an industry standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998).  https://doi.org/10.1109/99.660313 CrossRefGoogle Scholar
  8. 8.
    Friedman, D.: Infrared characteristics of ocean water (1.5–15\(\mu\)m). Appl. Opt. 8(10), 2073–2078 (1969).  https://doi.org/10.1364/AO.8.002073 CrossRefGoogle Scholar
  9. 9.
    Guo, X., Wu, J., Wu, Z., Huang, B.: Parallel computation of aerial target reflection of background infrared radiation: performance comparison of openmp, openacc, and cuda implementations. IEEE J. Select. Top. Appl. Earth Obs. Remote Sens. 9(4), 1653–1662 (2016)CrossRefGoogle Scholar
  10. 10.
    Hale, G.M., Querry, M.R.: Optical constants of water in the 200-nm to 200-\(\mu\)m wavelength region. Appl. Opt. 12(3), 555–563 (1973).  https://doi.org/10.1364/AO.12.000555 CrossRefGoogle Scholar
  11. 11.
    Huang, W., Ji, H.: Effect of environmental radiation on the long-wave infrared signature of cruise aircraft. Aerosp. Sci. Technol. 56, 125–134 (2016).  https://doi.org/10.1016/j.ast.2016.07.006 CrossRefGoogle Scholar
  12. 12.
    Kreiss W., Lanich, W., Niple, E.: Electro-optical aerial targeting workstation. In: Proceedings of the IEEE 1989 National, Aerospace and Electronics Conference, NAECON 1989, IEEE, pp. 902–908 (1989). 10.1109/NAECON.1989.40320Google Scholar
  13. 13.
    Mahulikar, S.P., Potnuru, S.K., Rao, G.A.: Study of sunshine, skyshine, and earthshine for aircraft infrared detection. J. Opt. A Pure Appl. Opt. 11(4), 045703 (2009).  https://doi.org/10.1088/1464-4258/11/4/045703 CrossRefGoogle Scholar
  14. 14.
    Masuda, K., Takashima, T., Takayama, Y.: Emissivity of pure and sea waters for the model sea surface in the infrared window regions. Remote Sens. Environ. 24(2), 313–329 (1988).  https://doi.org/10.1016/j.rse.2004.09.002 CrossRefGoogle Scholar
  15. 15.
    Nicodemus, F.E.: Reflectance nomenclature and directional reflectance and emissivity. Appl. Opt. 9(6), 1474–1475 (1970).  https://doi.org/10.1364/AO.9.001474 CrossRefGoogle Scholar
  16. 16.
    NVIDIAC (2007) Compute unified device architecture programming guide. NVIDIA CorporationGoogle Scholar
  17. 17.
    NVIDIAC (2013a) Compiler driver NVCC. NVIDIA CorporationGoogle Scholar
  18. 18.
    NVIDIAC (2013b) Tuning CUDA applications for KEPLER. NVIDIA CorporationGoogle Scholar
  19. 19.
    Petitcolin, F., Vermote, E.: Land surface reflectance, emissivity and temperature from MODIS middle and thermal infrared data. Remote Sens. Environ. 83(1), 112–134 (2002).  https://doi.org/10.1016/S0034-4257(02)00094-9 CrossRefGoogle Scholar
  20. 20.
    Rao, A.G., Mahulikar, S.P.: Effect of atmospheric transmission and radiance on aircraft infared signatures. J. Aircr. 42(4), 1046–1054 (2005).  https://doi.org/10.2514/1.7515 CrossRefGoogle Scholar
  21. 21.
    Salisbury, J.W., Wald, A., D’Aria, D.M.: Thermal-infrared remote sensing and Kirchhoff’s law: 1. Laboratory measurements. J. Geophys. Res. Solid Earth 99(B6), 11897–11911 (1994).  https://doi.org/10.1029/93JB03600 CrossRefGoogle Scholar
  22. 22.
    Wan, Z.: Collection-5 MODIS land surface temperature products users guide. University of California, Santa Barbara, ICESS (2007)Google Scholar
  23. 23.
    Wan, Z., Zhang, Y., Zhang, Q., Li, Z.L.: Quality assessment and validation of the MODIS global land surface temperature. Int. J. Remote Sens. 25(1), 261–274 (2004).  https://doi.org/10.1080/0143116031000116417 CrossRefGoogle Scholar
  24. 24.
    Wang, W., Liang, S., Augustine, J.A.: Estimating high spatial resolution clear-sky land surface upwelling longwave radiation from MODIS data. IEEE Trans. Geosci. Remote Sens. 47(5), 1559–1570 (2009).  https://doi.org/10.1109/TGRS.2008.2005206 CrossRefGoogle Scholar
  25. 25.
    Wang, Z.M.: MODIS land surface temperature algorithm theoretical basis document, version3 3 (1999)Google Scholar
  26. 26.
    Wilson, M., Elliott, R., Youern, K.: The use of measured sky radiance data to improve infrared signature modelling. Int. J. Remote Sens. 29(7), 1929–1944 (2008).  https://doi.org/10.1080/01431160701395179 CrossRefGoogle Scholar
  27. 27.
    Wu, X., Smith, W.L.: Emissivity of rough sea surface for 8–13 \(\mu\)m: modeling and verification. Appl. Opt. 36(12), 2609–2619 (1997).  https://doi.org/10.1364/AO.36.002609 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Physics and Optoelectronic EngineeringXidian UniversityXi’anChina
  2. 2.School of Electronic EngineeringXidian UniversityXi’anChina

Personalised recommendations