Advertisement

Journal of Real-Time Image Processing

, Volume 14, Issue 3, pp 617–633 | Cite as

An efficient nonlinear approach for removing fixed-value impulse noise from grayscale images

  • Dante Mújica-Vargas
  • José de Jesús Rubio
  • Jean Marie Vianney Kinani
  • Francisco J. Gallegos-Funes
Special Issue Paper

Abstract

Removal of salt and pepper noise has been one of the most interesting researches in the field of image preprocessing tasks; it has two simultaneous stringent demands: the suppression of impulses and the preservation of fine details. To address this problem, a scheme based on nonlinear filters is proposed; it consists of the introduction of a redescending M-estimator within the modified nearest neighbor filter. In order to analyze all pixels in the neighborhood, as well as to reduce the magnitude of the existing impulses, a redescending M-estimator is used; the remaining pixels are processed by the modified nearest neighbor filter to obtain the best estimation of a noise-free pixel. The impulsive suppression is applied on the entire image by using a sliding window; the local information obtained by this one also allows to calculate the thresholds that characterize the influence function tested in the redescending M-estimator. To suppress high density fixed-value impulse noise in large-size grayscale images, the proposal is implemented on a heterogeneous CPU–GPU architecture. The noise reduction and the processing time of the proposed approach are evaluated by extensive simulations; its effectiveness is verified by quantitative and qualitative results.

Keywords

Salt and pepper noise Noise suppression Nonlinear approach Grayscale images GPU 

Notes

Acknowledgements

The authors are grateful with the editor and with the reviewers for their valuable comments and insightful suggestions, which can help to improve this research significantly. The authors thank to CONACYT as well as Tecnológico Nacional de México (TecNM)/Centro Nacional de Investigación y Desarrollo Tecnológico (CENIDET) for their financial support through the project 5688.16-P named "Sistema para procesamiento de imágenes de resonancia magnética para segmentación 3D y visualización de tejidos cerebrales".

References

  1. 1.
    Ahmed, F., Das, S.: Removal of high-density salt-and-pepper noise in images with an iterative adaptive fuzzy filter using alpha-trimmed mean. IEEE Trans. Fuzzy Syst. 22(5), 1352–1358 (2014)CrossRefGoogle Scholar
  2. 2.
    Ali, A., Qadir, M.F.: A modified m-estimator for the detection of outliers. Pak. J. Stat. Oper. Res. 1(1), 49–64 (2005)CrossRefGoogle Scholar
  3. 3.
    Andrews, D.F., Hampel, F.R.: Robust Estimates of Location: Survey and Advances. Princeton University Press, Princeton (2015)zbMATHGoogle Scholar
  4. 4.
    Boncelet, C.: Image noise models. In: Bovik, A.C. (ed.) The Essential Guide to Image Processing, 2nd edn, pp. 143–167. Academic Press, Boston (2009)CrossRefGoogle Scholar
  5. 5.
    Chen, C.L.P., Liu, L., Chen, L., Tang, Y.Y., Zhou, Y.: Weighted couple sparse representation with classified regularization for impulse noise removal. IEEE Trans. Image Process. 24(11), 4014–4026 (2015)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Cheng, J., Grossman, M., McKercher, T.: Professional Cuda C Programming. Wiley, New York (2014)Google Scholar
  7. 7.
    Chou, H.-H., Hsu, L.-Y.: A noise-ranking switching filter for images with general fixed-value impulse noises. Sig. Process. 106, 198–208 (2015)CrossRefGoogle Scholar
  8. 8.
    Chou, H.-H., Hsu, L.-Y., Hwai-Tsu, H.: Turbulent-pso-based fuzzy image filter with no-reference measures for high-density impulse noise. IEEE Trans. Cybern. 43(1), 296–307 (2013)CrossRefGoogle Scholar
  9. 9.
    Eklund, A., Dufort, P., Forsberg, D., LaConte, S.M.: Medical image processing on the gpu—past, present and future. Med. Image Anal. 17(8), 1073–1094 (2013)CrossRefGoogle Scholar
  10. 10.
    Frigui, H., Krishnapuram, R.: A robust algorithm for automatic extraction of an unknown number of clusters from noisy data. Pattern Recogn. Lett. 17(12), 1223–1232 (1996)zbMATHCrossRefGoogle Scholar
  11. 11.
    Gallegos-Funes, F.J., Ponomaryov, V.I.: Real-time image filtering scheme based on robust estimators in presence of impulsive noise. Real-Time Imaging 10(2), 69–80 (2004)CrossRefGoogle Scholar
  12. 12.
    Gupta, V., Chaurasia, V., Shandilya, M.: Random-valued impulse noise removal using adaptive dual threshold median filter. J. Vis. Commun. Image Represent. 26, 296–304 (2015)CrossRefGoogle Scholar
  13. 13.
    Habib, M., Hussain, A., Rasheed, S., Ali, M.: Adaptive fuzzy inference system based directional median filter for impulse noise removal. AEU-Int. J. Electron. Commun. 70(5), 689–697 (2016)CrossRefGoogle Scholar
  14. 14.
    Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J., Hampel, F.R., Ronchetti, E.M., Stahel, W.A.: Robust Statistics: The Approach Based on Influence Functions. Wiley, New York (1986)zbMATHGoogle Scholar
  15. 15.
    Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J., Stahel, W.A.: Robust Statistics: The Approach Based on Influence Functions, vol. 114. Wiley, New York (2011)zbMATHGoogle Scholar
  16. 16.
    Hodges Jr., J.L., Lehmann, E.L.: Estimates of location based on rank tests. Ann. Math. Stat. 34, 598–611 (1963)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Hosseini, H., Marvasti, F.: Fast restoration of natural images corrupted by high-density impulse noise. EURASIP J. Image Video Process. 2013(1), 1–7 (2013)CrossRefGoogle Scholar
  18. 18.
    Hosseini, H., Hessar, F., Marvasti, F.: Real-time impulse noise suppression from images using an efficient weighted-average filtering. IEEE Signal Process. Lett. 22(8), 1050–1054 (2015)CrossRefGoogle Scholar
  19. 19.
    Huber, P.J.: The basic types of estimates. In: Huber, P.J. (ed.) Robust Statistics, pp. 43–72. Wiley, Hoboken (1981)CrossRefGoogle Scholar
  20. 20.
    Ibrahim, H., Neo, K.C., Teoh, S.H., Ng, T.F., Chieh, D.C.J., Hassan, N.F.N.: Impulse noise model and its variations. Int. J. Comput. Electr. Eng. 4(5), 647 (2012)CrossRefGoogle Scholar
  21. 21.
    Li, Y., Sun, J., Luo, H.: A neuro-fuzzy network based impulse noise filtering for gray scale images. Neurocomputing 127, 190–199 (2014)CrossRefGoogle Scholar
  22. 22.
    Li, Z., Cheng, Y., Tang, K., Yong, X., Zhang, D.: A salt and pepper noise filter based on local and global image information. Neurocomputing 159, 172–185 (2015)CrossRefGoogle Scholar
  23. 23.
    Malinski, L., Smolka, B.: Fast adaptive switching technique of impulsive noise removal in color images. J. Real-Time Image Process. (2016).  https://doi.org/10.1007/s11554-016-0599-6 Google Scholar
  24. 24.
    Maronna, R.A.R.D., Martin, D., Yohai, V.: Robust Statistics. Wiley, Chichester (2006)zbMATHCrossRefGoogle Scholar
  25. 25.
    Mújica-Vargas, D., Gallegos-Funes, F.J., Rosales-Silva, A.J.: A fuzzy clustering algorithm with spatial robust estimation constraint for noisy color image segmentation. Pattern Recogn. Lett. 34(4), 400–413 (2013)CrossRefGoogle Scholar
  26. 26.
    Mújica-Vargas, D., Gallegos-Funes, F.J., Rosales-Silva, A.J., de Jesús Rubio, J.: Robust c-prototypes algorithms for color image segmentation. EURASIP J. Image Video Process. 2013(1), 1 (2013)CrossRefGoogle Scholar
  27. 27.
    Owens, J., Luebke, D.: Intro to parallel programming. http://www.nvidia.com/object/cuda_home_new.html/. [Online] Accessed 16 June 2016
  28. 28.
    Pitas, I., Venetsanopoulos, A.N.: Median filters. In: Pitas, I., Venetsanopoulos, A.N. (eds.) Nonlinear Digital Filters, pp. 63–116. Springer, Berlin (1990)CrossRefGoogle Scholar
  29. 29.
    Pitas, I., Venetsanopoulos, A.N.: Order statistics in digital image processing. Proc. IEEE 80(12), 1893–1921 (1992)CrossRefGoogle Scholar
  30. 30.
    Poularikas, A.D.: Handbook of Formulas and Tables for Signal Processing. CRC Press, London (1998)zbMATHCrossRefGoogle Scholar
  31. 31.
    Sánchez, M.G., Vidal, V., Bataller, J., Arnal, J.: A parallel method for impulsive image noise removal on hybrid CPU/GPU systems. Proc. Comput. Sci. 18, 2504–2507 (2013)CrossRefGoogle Scholar
  32. 32.
    Shevlyakov, G., Morgenthaler, S., Shurygin, A.: Redescending m-estimators. J. Stat. Plan. Inference 138(10), 2906–2917 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Teoh, S.H., Ibrahim, H.: Variations on impulse noise model in digital image processing field: a survey on current research inclination. Int. J. Innov. Manag. Technol. 4(4), 393 (2013)Google Scholar
  34. 34.
    Tukey, J.W.: A survey of sampling from contaminated distributions. Contrib. Prob. Stat. 2, 448–485 (1960)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Ullah, I., Qadir, M.F., Ali, A.: Insha’s redescending m-estimator for robust regression: a comparative study. Pak. J. Stat. Oper. Res. 2(2), 135–144 (2006)CrossRefGoogle Scholar
  36. 36.
    Vijaykumar, V.R., Vanathi, P.T., Kanagasabapathy, P., Ebenezer, D.: Robust statistics based algorithm to remove salt and pepper noise in images. Int. J. Inf. Commun. Eng. 5(3), 164–173 (2009)Google Scholar
  37. 37.
    Zhang, C., Wang, K.: A switching median-mean filter for removal of high-density impulse noise from digital images. Opt. Int. J. Light Electron Opt. 126(9), 956–961 (2015)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Dante Mújica-Vargas
    • 1
  • José de Jesús Rubio
    • 2
  • Jean Marie Vianney Kinani
    • 3
  • Francisco J. Gallegos-Funes
    • 4
  1. 1.Department of Computer ScienceCENIDETCuernavaca-MorelosMexico
  2. 2.Sección de Estudios de Posgrado e Investigación, ESIME AzcapotzalcoInstituto Politécnico NacionalCiudad de MéxicoMexico
  3. 3.Department of Computational SystemsITESHUHuichapanMexico
  4. 4.Escuela Superior de Ingeniería Mecánica y EléctricaInstituto Politécnico NacionalCiudad de MéxicoMexico

Personalised recommendations