Skip to main content
Log in

Bio-inspired heterogeneous architecture for real-time pedestrian detection applications

  • Special Issue Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

Along with the development of powerful processing platforms, heterogeneous architectures are nowadays permitting new design space explorations. In this paper, we propose a novel heterogeneous architecture for reliable pedestrian detection applications. It deploys an efficient Histogram of Oriented Gradient pipeline tightly coupled with a neuro-inspired spatio-temporal filter. By relying on hardware–software co-design principles, our architecture is capable of processing video sequences from real-word dynamic environments in real time. The paper presents the implemented algorithm and details the proposed architecture for executing it, exposing in particular the partitioning decisions made to meet the required performance. A prototype implementation is described and the results obtained are discussed with respect to other state-of-the-art solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bauer, S., Köhler, S., Doll, K., Brunsmann, U.: FPGA-GPU architecture for kernel SVM pedestrian detection. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), IEEE, pp 61–68 (2010)

  2. Benenson, R., Mathias, M., Timofte, R., Van Gool, L.: Pedestrian detection at 100 frames per second. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, pp 2903–2910 (2012)

  3. Benenson, R., Omran, M., Hosang, J., Schiele, B.: Ten years of pedestrian detection, what have we learned? In: Computer Vision-ECCV 2014 Workshops, Springer, pp 613–627 (2014)

  4. Blair, C., Robertson, N.M., Hume, D.: Characterizing a heterogeneous system for person detection in video using histograms of oriented gradients: Power versus speed versus accuracy. IEEE J. Emerg. Select. Topics Circuits Syst. 3(2), 236–247 (2013)

    Article  Google Scholar 

  5. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition vol 1, pp 886–893 (2005)

  6. Dollar, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian detection: an evaluation of the state of the art. IEEE Trans. Pat. Anal. Mach. Intel. 34(4), 743–761 (2012)

    Article  Google Scholar 

  7. Enzweiler, M., Gavrila, D.M.: Monocular pedestrian detection: survey and experiments. IEEE Trans. Pat. Anal. Mach. Intel. 31(12), 2179–2195 (2009)

    Article  Google Scholar 

  8. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (voc) challenge. Int. J. Comp. Vision 88(2), 303–338 (2010)

    Article  Google Scholar 

  9. Gandhi, T., Trivedi, M.: (2007) Pedestrian protection systems: Issues, survey, and challenges. IEEE Trans. Intel. Transp. Syst. 413–430

  10. Gavrila, D.M., Munder, S.: Multi-cue pedestrian detection and tracking from a moving vehicle. Int. J. Comp. Vision 73(1), 41–59 (2007)

    Article  Google Scholar 

  11. Hahnle, M., Saxen, F., Hisung, M., Brunsmann, U., Doll, K.: (2013) FPGA-based real-time pedestrian detection on high-resolution images. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 629–635

  12. Happe, M., Lübbers, E., Platzner, M.: A self-adaptive heterogeneous multi-core architecture for embedded real-time video object tracking. J. Real-Time Image Process. 8(1), 95–110 (2013)

    Article  Google Scholar 

  13. Hartmann, C., Yupatova, A., Reichenbach, M., Fey, D., German, R.: A holistic approach for modeling and synthesis of image processing applications for heterogeneous computing architectures (2015)

  14. Hong, G.S., Kim, B.G., Hwang, Y.S., Kwon, K.K.: Fast multi-feature pedestrian detection algorithm based on histogram of oriented gradient using discrete wavelet transform. Multim. Tools Appl. (2015)

  15. Hua, C., Makihara, Y., Yagi, Y., Iwasaki, S., Miyagawa, K., Li, B.: Onboard monocular pedestrian detection by combining spatio-temporal HOG with structure from motion algorithm. Mach. Vision Appl. 26(2–3), 161–183 (2015)

    Article  Google Scholar 

  16. Hussein, M., Porikli, F., Davis, L.: A comprehensive evaluation framework and a comparative study for human detectors. IEEE Trans. Intel. Transp. Syst. 10(3), 417–427 (2009)

    Article  Google Scholar 

  17. Inggs, G., Thomas, D.B., Luk, W.: An efficient, automatic approach to high performance heterogeneous computing. arXiv preprint arXiv:150504417 (2015)

  18. Joachims, T.: Svmlight: support vector machine. http://svmlight.joachims.org/ (1999)

  19. Kadota, R., Sugano, H., Hiromoto, M., Ochi, H., Miyamoto, R., Nakamura, Y.: Hardware architecture for hog feature extraction. In: Fifth International Conference on Intelligent Information Hiding and Multimedia Signal Processing, 2009. IIH-MSP ’09, pp 1330–1333 (2009)

  20. Kim, S.H., Kim, J.S., Wan, V., Suh, I.H.: Automotive adas camera system configuration using multi-core microcontroller. Tech. rep, SAE Technical Paper (2015)

  21. Klaser, A., Marszałek, M., Schmid, C.: A spatio-temporal descriptor based on 3d-gradients. In: BMVC 2008-19th British Machine Vision Conference, British Machine Vision Association, pp 275–281 (2008)

  22. Liu, W., Yu, B., Duan, C., Chai, L., Yuan, H., Zhao, H.: A pedestrian-detection method based on heterogeneous features and ensemble of multi-view-pose parts. IEEE Trans. Intel. Transp. Syst. 16(2), 813–824 (2015)

    Google Scholar 

  23. Ma, X., Najjar, W., Roy-Chowdhury, A.: Evaluation and acceleration of high-throughput fixed-point object detection on FPGAs. IEEE Trans. Circuits Syst. Video Technol. 25(6), 1051–1062 (2015)

    Article  Google Scholar 

  24. Machida, T., Naito, T.: GPU and CPU cooperative accelerated pedestrian and vehicle detection. In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), IEEE, pp 506–513 (2011)

  25. Maggiani, L., Salvadori, C., Petracca, M., Pagano, P., Saletti, R.: Reconfigurable architecture for computing histograms in real-time tailored to FPGA-based smart camera. In: 2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE), IEEE, pp 1042–1046 (2014)

  26. Maggiani, L., Bourrasset, C., Berry, F., Sérot, J., Petracca, M., Salvadori, C.: Extraction core for FPGA-based smart cameras. In: Proceedings of the 9th International Conference on Distributed Smart Camera, ACM, pp 128–133 (2015)

  27. Maggiani, L., Bourrasset, C., Petracca, M., Berry, F., Pagano, P., Salvadori, C.: HOG-Dot: a parallel kernel-based gradient extraction for embedded image processing. IEEE Signal Process Lett. 22(11), 2132–2136 (2015)

    Article  Google Scholar 

  28. Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on featured distributions. Patt. Recogn. 29(1), 51–59 (1996)

    Article  Google Scholar 

  29. Quinton, J.C., Girau, B.: Predictive neural fields for improved tracking and attentional properties. In: The 2011 International Joint Conference on Neural Networks (IJCNN), IEEE, pp 1629–1636 (2011)

  30. Reiche, O., Haublein, K., Reichenbach, M., Hannig, F., Teich, J., Fey, D.: Automatic optimization of hardware accelerators for image processing. In: DATE Workshop on Heterogeneous Architectures and Design Methods for Embedded Image Systems, HIS 2015 (2015)

  31. Tanabe, J., Toru, S., Yamada, Y., Watanabe, T., Okumura, M., Nishiyama, M., Nomura, T., Oma, K., Sato, N., Banno, M. et al.: 18.2 a 1.9 tops and 564gops/w heterogeneous multicore soc with color-based object classification accelerator for image-recognition applications. In: 2015 IEEE International Solid-State Circuits Conference-(ISSCC), IEEE, pp 1–3 (2015)

  32. Vangel, B.C.D., Torres-Huitzil, C., Girau, B.: Randomly spiking dynamic neural fields. ACM J. Emerg. Technol. Comp. Syst. (JETC) 11(4), 37 (2015)

    Google Scholar 

  33. Vapnik, V.: Estimation of Dependences Based on Empirical Data: Springer Series in Statistics (Springer Series in Statistics). Springer-Verlag New York Inc, Secaucus (1982)

    Google Scholar 

  34. World Health Organization (2013) Road traffic injuries. http://www.who.int/mediacentre/factsheets/fs358/en/

  35. Wu, S., Laganière, R., Payeur, P.: Improving pedestrian detection with selective gradient self-similarity feature. Pat. Recogn. 48(8), 2364–2376 (2015)

    Article  Google Scholar 

  36. Yadav, R., Senthamilarasu, V., Kutty, K., Vaidya, V., Ugale, S.: A review on day-time pedestrian detection. Tech. rep, SAE Technical Paper (2015)

  37. Yao, S., Pan, S., Wang, T., Zheng, C., Shen, W., Chong, Y.: A new pedestrian detection method based on combined HOG and LSS features. Neurocomputing 151, 1006–1014 (2015)

    Article  Google Scholar 

  38. Zhang, J., Huang, K., Yu, Y., Tan, T.: (2011) Boosted local structured hog-lbp for object localization. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, pp 1393–1400

Download references

Acknowledgments

This work has been sponsored by the French government research programme “Investissements d’avenir” through the IMobS3 Laboratory of Excellence (ANR-10-LABX-16-01), by the European Union through the program Regional competitiveness and employment 2007-2013 (ERDF Auvergne region), and by the Auvergne region.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Maggiani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maggiani, L., Bourrasset, C., Quinton, JC. et al. Bio-inspired heterogeneous architecture for real-time pedestrian detection applications. J Real-Time Image Proc 14, 535–548 (2018). https://doi.org/10.1007/s11554-016-0581-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-016-0581-3

Keywords

Navigation