Journal of Real-Time Image Processing

, Volume 16, Issue 2, pp 535–545 | Cite as

Real time security framework for detecting abnormal events at ATM installations

  • Vikas TripathiEmail author
  • Ankush Mittal
  • Durgaprasad Gangodkar
  • Vishnu Kanth
Original Research Paper


Automated Teller Machines (ATM) transactions are quick and convenient, but the machines and the areas surrounding them make people and ATM vulnerable to felonious activities if not properly put under the protection. Responsibility for providing security needs to be fixed, however, most machines have very less or no security. It is imminent to develop security framework that would identify event as their happening. In this paper we propose a robust computer vision approach for identifying abnormal activity at ATM premises in real time. For effective identification of activity, we propose a novel method in which different Window size is used to record magnitude of pixel intensity using root of sum of square method. To describe this pattern, histogram of gradients is used. Further random forest is applied to infer the most likely class. The average accuracy of our security system is 93.1 %. For validation of our approach we have tested it on two standard datasets, HMDB and Caviar. Our approach achieved 52.12 % accuracy on HMDB dataset and 81.48 % on Caviar dataset.


ATM Security system HOG Random forest Real time 


  1. 1.
    Scott, M.S.: Robbery at automated teller machines. US Department of Justice, Office of Community Oriented Policing Services (2001)Google Scholar
  2. 2.
    Sharma, N.: Analysis of different vulnerabilities in auto teller machine transactions. J. Global Res. Comp. Sci. 3(3), 38–40 (2012)Google Scholar
  3. 3.
    Ahad, M.A.R., Tan, J.K., Kim, H., Ishikawa, S.: Motion history image: its variants and applications. Mach. Vision Appl. 23(2), 255–281 (2012)CrossRefGoogle Scholar
  4. 4.
    Davis, J.W., Bobick, A.F.: The representation and recognition of human movement using temporal templates, pp. 928–934. In Computer Vision and Pattern Recognition, IEEE Proceedings (1997)Google Scholar
  5. 5.
    Bobick, A. F., Davis, J. W.: The recognition of human movement using temporal templates: IEEE Transactions Pattern Analysis and Machine Intelligence, vol. 23, no. 3, pp. 257–267 (2001)Google Scholar
  6. 6.
    Poppe, R.: A survey on vision based human action recognition. Image Vis. Comput. 28(6), 976–990 (2010)CrossRefGoogle Scholar
  7. 7.
    Debard, G., Karsmakers, P., Deschod, M., Vlaeyen, E., Bergh, J.V.D., Dejaeger, E.: Camera based fall detection using multiple features validated with real life video. Intell. Environ. Workshops 10, 441–450 (2011)Google Scholar
  8. 8.
    Mahbub, U., Imtiaz, H., Ahad, M. A. R.: Action recognition based on statistical analysis from clustered flow vectors. Signal, Image and Video Processing, 1–11 (2013)Google Scholar
  9. 9.
    Gong, W., Gonzàlez, J., Roca, F. X.: Human action recognition based on estimated weak poses. EURASIP Journal on Advances in Signal Processing, 1–14 (2012)Google Scholar
  10. 10.
    Paul, M., Haque, S. M., Chakraborty, S.: Human detection in surveillance videos and its applications-a review. EURASIP J. Adv. Signal Proc., 1–16 (2013)Google Scholar
  11. 11.
    Kim, W., Lee, J., Kim, M., Oh, D., Kim, C.: Human action recognition using ordinal measure of accumulated motion. EURASIP J. Adv. Signal Proc., (2010)Google Scholar
  12. 12.
    Laptev, I.: Space-time interest points. Int. J. Comput. Vision 64(2–3), 107–123 (2005)CrossRefGoogle Scholar
  13. 13.
    Laptev, I., Marszałek, M., Schmid, C., Rozenfeld, B.: Learning realistic human actions from movies. Proc. IEEE Conference Computer Vision and Pattern Recognition, 1–8 (2008)Google Scholar
  14. 14.
    Wang, H., Klaser, A., Schmid, C., Liu, C. L.: Action recognition by dense trajectories. Proc. IEEE Conference Computer Vision and Pattern Recognition, 3169–3176 (2011)Google Scholar
  15. 15.
    Wang, H., Klaser, A., Schmid, C., Liu, C.L.: Dense trajectories and motion boundary descriptors for action recognition. Int. J. Comput. Vision 103(1), 60–79 (2013)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Wang, H., Finn, A., Erdinc, O., Vincitore, A.: Spatial-temporal structural and dynamics features for Video Fire Detection. In WACV, 513–519 (2013)Google Scholar
  17. 17.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. Comput. Vision Pattern Recog. CVPR 1, 886–893 (2005)Google Scholar
  18. 18.
    Dollar, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian detection: an evaluation of the state of the art. IEEE Trans. Pattern Anal. Mach. Intell. 34(4), 743–761 (2012)CrossRefGoogle Scholar
  19. 19.
    Dollar, P., Appel, R., Belongie, S., Perona, P.: Fast feature pyramids for object detection. IEEE Trans. Pattern Anal. Mach. Intell. 36(8), 1532–1545 (2014)CrossRefGoogle Scholar
  20. 20.
    Scovanner, P., Saad, A., Mubarak, S.: A 3-dimensional sift descriptor and its application to action recognition. Proc. international conference on Multimedia, 357–360 (2007)Google Scholar
  21. 21.
    Klaser, A., Marszałek, M., Schmid, C.: A spatio-temporal descriptor based on 3d-gradients. Proc. 19th British Machine Vision Conference, 275–1 (2008)Google Scholar
  22. 22.
    Everts, I., Gemert, J. C. van, Gevers, T.: Evaluation of color stips for human action recognition. Proc. IEEE Conference Computer Vision and Pattern Recognition, 2850–2857 (2013)Google Scholar
  23. 23.
    Souza, F., Valle, E., Cámara-Chávez, G., de Araújo, A.: An evaluation on color invariant based local spatiotemporal features for action recognition. In IEEE SIBGRAPI (2012)Google Scholar
  24. 24.
    Sadanand, S., Corso, J. J.: Action bank: A high-level representation of activity in video. Proc. IEEE Conference Computer Vision and Pattern Recognition, 1234–1241 (2012)Google Scholar
  25. 25.
    Le, Q. V., Zou, W. Y., Yeung, S. Y., Ng, A. Y.: Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis. Comput. Vision Pattern Recog. (CVPR), IEEE, 3361–3368 (2011)Google Scholar
  26. 26.
    Kuehne, H., Jhuang, H., Stiefelhagen, R., Serre, T.: HMDB: a large video database for human motion recognition. Proc. IEEE International Conference in computer vision (ICCV), 2556–2563 (2011)Google Scholar
  27. 27.
    Nievas, E.B., Suarez, O.D., García, G.B., Sukthankar, R.: Violence detection in video using computer vision techniques, pp. 332–339. Computer Analysis of Images and Patterns. Springer, Berlin Heidelberg (2011)Google Scholar
  28. 28.
    Mayoraz, E., Alpaydin, E.: Support vector machines for multi-class classification, pp. 833–842. Engineering Applications of Bio-Inspired Artificial Neural Networks. Springer, Berlin Heidelberg (1999)Google Scholar
  29. 29.
    Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2010)CrossRefGoogle Scholar
  30. 30.
    Schapire, R. E., Freund, Y., Bartlett, P., Lee, W. S.: Boosting the margin: A new explanation for the effectiveness of voting methods. Ann. Stat. 1651–1686 (1998)Google Scholar
  31. 31.
    Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult lighting conditions. Image Processing 19(6), 1635–1650 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Tuytelaars, T.: Dense interest points: Proc. IEEE Conference Computer Vision and Pattern Recognition, 2281–2288 (2010)Google Scholar
  33. 33.
    Kovashka, A., Grauman, K.: Learning a hierarchy of discriminative space-time neighborhood features for human action recognition. Proc. IEEE Conference Computer Vision and Pattern Recognition, 2046–2053 (2010)Google Scholar
  34. 34.
    Jiang, Y. G., Dai, Q., Xiangyang, X., Wei, L., Ngo, C. W.: Trajectory-based modeling of human actions with motion reference points. Proc. Computer Vision (ECCV), Berlin Heidelberg, 425–438 (2012)Google Scholar
  35. 35.
    Wang, H., Schmid, C.: Action Recognition with Improved Trajectories. Proc. IEEE International Conference in Computer Vision (ICCV), 3551–3558 (2013)Google Scholar
  36. 36.
    Jain, M., Jégou, H., Bouthemy, P.: Better exploiting motion for better action recognition. Proc. IEEE Conference Computer Vision and Pattern Recognition, 2555–2562 (2013)Google Scholar
  37. 37.
    Shi, F., Petriu, E., Laganiere, R.: Sampling strategies for real-time action recognition. Proc. IEEE Conference Computer Vision and Pattern Recognition, 2595–2602 (2013)Google Scholar
  38. 38.
    Caviar dataset. Accessed 20 Nov 2014

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Vikas Tripathi
    • 1
    • 2
    Email author
  • Ankush Mittal
    • 2
  • Durgaprasad Gangodkar
    • 2
  • Vishnu Kanth
    • 2
  1. 1.Uttarakhand Technical UniversityDehradunIndia
  2. 2.Graphic Era UniversityDehradunIndia

Personalised recommendations