Journal of Real-Time Image Processing

, Volume 16, Issue 2, pp 413–428 | Cite as

Overview and evaluation of the JPEG XT HDR image compression standard

  • Alessandro ArtusiEmail author
  • Rafał K. Mantiuk
  • Thomas Richter
  • Philippe Hanhart
  • Pavel Korshunov
  • Massimiliano Agostinelli
  • Arkady Ten
  • Touradj Ebrahimi
Original Research Paper


Standards play an important role in providing a common set of specifications and allowing inter-operability between devices and systems. Until recently, no standard for high-dynamic-range (HDR) image coding had been adopted by the market, and HDR imaging relies on proprietary and vendor-specific formats which are unsuitable for storage or exchange of such images. To resolve this situation, the JPEG Committee is developing a new coding standard called JPEG XT that is backward compatible to the popular JPEG compression, allowing it to be implemented using standard 8-bit JPEG coding hardware or software. In this paper, we present design principles and technical details of JPEG XT. It is based on a two-layer design, a base layer containing a low-dynamic-range image accessible to legacy implementations, and an extension layer providing the full dynamic range. The paper introduces three of currently defined profiles in JPEG XT, each constraining the common decoder architecture to a subset of allowable configurations. We assess the coding efficiency of each profile extensively through subjective assessments, using 24 naïve subjects to evaluate 20 images, and objective evaluations, using 106 images with five different tone-mapping operators and at 100 different bit rates. The objective results (based on benchmarking with subjective scores) demonstrate that JPEG XT can encode HDR images at bit rates varying from 1.1 to 1.9 bit/pixel for estimated mean opinion score (MOS) values above 4.5 out of 5, which is considered as fully transparent in many applications. This corresponds to 23-times bitstream reduction compared to lossless OpenEXR PIZ compression.


JPEG XT High dynamic range imaging Image compression Image quality assessment Real-time imaging 



This work was partially supported by Ministry of Science and Innovation Subprogramme Ramon y Cajal RYC-2011-09372, TIN2013-47276-C6-1-R from Spanish government, 2014 SGR 1232 from Catalan government. EPFL authors acknowledge the Swiss National Foundation for Scientific Research (FN 200021-143696-1) which supported them in carrying out the work presented in this paper. The objective quality evaluation was possible thanks to High Performance Computing Wales, Wales national supercomputing service (


  1. 1.
    Aydın, T.O., Mantiuk, R., Myszkowski, K., Seidel, H.P.: Extending quality metrics to full luminance range images. In: SPIE Human Vision and Electronic Imaging XIII, vol 6806 (2008)Google Scholar
  2. 2.
    Chen, M., Qiu, G., Chen, Z., Wang, C.: JPEG compatible coding of high dynamic range imagery using tone mapping operators. In: Picture Coding Symposium (PCS) vol. 1, pp 22–28 (2006)Google Scholar
  3. 3.
    Drago F, Myszkowski K, Annen T, Chiba N (2003) Adaptive logarithmic mapping for displaying high contrast scenes. Computer Graphics Forum 22(3):419–426, DOI 10.1111/1467-8659.00689, Scholar
  4. 4.
    Hanhart P, Korshunov P, Ebrahimi T (2013) Benchmarking of quality metrics on ultra-high definition video sequences. In: International Conference on Digital Signal Processing (DSP), pp 1–8. doi: 10.1109/ICDSP.2013.6622760
  5. 5.
    Hanhart, P., Bernardo, M., Korshunov, P., Pereira, M., Pinheiro, A., Ebrahimi, T. (2014a) HDR image compression: a new challenge for objective quality metrics. In: QoMEX, pp 159–164Google Scholar
  6. 6.
    Hanhart, P., Korshunov, P., Ebrahimi, T.: Crowdsourcing evaluation of high dynamic range compression. In: SPIE Applications Of Digital Image Processing XXXVII, vol 9217 (2014b)Google Scholar
  7. 7.
    Husak, W., Richter, T.: Information technology: Scalable compression and coding of continuous-tone still images, core coding system specification. International Organization for Standardization-ISO/IEC 18477-1 (to appear)Google Scholar
  8. 8.
    ITU-R BT2022.: General viewing conditions for subjective assessment of quality of SDTV and HDTV television pictures on flat panel displays. Int. Telecommun. Union (2012)Google Scholar
  9. 9.
    ITU-R BT500-13.: Methodology for the subjective assessment of the quality of television pictures. Int. Telecommun. Union (2012)Google Scholar
  10. 10.
    ITU-T P1401.: Methods, metrics and procedures for statistical evaluation, qualification and comparison of objective quality prediction models. ITU (2012)Google Scholar
  11. 11.
    Korshunov, P., Ebrahimi, T.: Context-dependent JPEG backward-compatible high-dynamic range image compression. Opt. Eng. 52(10), (2013)Google Scholar
  12. 12.
    Korshunov, P., Hanhart, P., Richter, T., Artusi, A., Mantiuk, R., Ebrahimi, T. Subjective quality assessment database of HDR images compressed with JPEG XT. In: 7th International Workshop on Quality of Multimedia Experience (QoMEX) (2015)Google Scholar
  13. 13.
    Mai, Z., Mansour, H., Mantiuk, R., Nasiopoulos, P., Ward, R., Heidrich, W.: Optimizing a tone curve for backward-compatible high dynamic range image and video compression. IEEE Trans Image Process 20(6), 1558–1571 (2011). doi: 10.1109/TIP.2010.2095866 MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Mantel, C., Ferchiu, S., Forchhammer, S.: Comparing subjective and objective quality assessment of HDR images compressed with JPEG XT. In: IEEE MMSP, pp 1–6. (2014). doi: 10.1109/MMSP.2014.6958833
  15. 15.
    Mantiuk, R., Seidel, H.P.: Modeling a generic tone-mapping operator. Comput. Graph. Forum 27(2), 699–708 (2008)CrossRefGoogle Scholar
  16. 16.
    Mantiuk, R., Krawczyk, G., Myszkowski, K., Seidel, H.P.: Perception-motivated high dynamic range video encoding. ACM Trans. Graph. 23(3), 733. (2004).
  17. 17.
    Mantiuk, R., Efremov, A., Myszkowski, K., Seidel, H.P.: Backward compatible high dynamic range MPEG video compression. ACM Trans. Graph, 25(3), 713–723 (2006a)CrossRefGoogle Scholar
  18. 18.
    Mantiuk, R., Myszkowski, K., Seidel, H.: A perceptual framework for contrast processing of high dynamic range images. ACM Trans. Appl, Percept. 3(3), 286–308 (2006b). doi: 10.1145/1166087.1166095.
  19. 19.
    Mantiuk, R., Daly, S., Kerofsky, L.: Display adaptive tone mapping. ACM Trans. Graph. 27(3):68. (2008).
  20. 20.
    Mantiuk, R., Kim, K.J., Rempel, A.G., Heidrich, W.: HDR-VDP-2: a calibrated visual metric for visibility and quality predictions in all luminance conditions. ACM Trans. Graph. 30(4), 1 (2011). doi: 10.1145/2010324.1964935 CrossRefGoogle Scholar
  21. 21.
    Miller, S., Nezamabadi, M., Daly, S.: Perceptual signal coding for more efficient usage of bit codes. SMPTE Motion Imaging J. 122(4), 52–59 (2013). doi: 10.5594/j18290.
  22. 22.
    Pattanaik, S., Hughes, C.: High-dynamic-range still-image encoding in JPEG 2000. IEEE Comput. Graph. Appl. 25(6), 57–64 (2005). doi: 10.1109/MCG.2005.133 CrossRefGoogle Scholar
  23. 23.
    Pennebaker, W.B., Mitchell, J.L.: JPEG Still Image Data Compression Standard. Van Nostrand Reinhold, New York (1992)Google Scholar
  24. 24.
    Pinheiro, A., Fliegel, K., Korshunov, P., Krasula, L., Bernardo, M., Pereira, M., Ebrahimi, T.: Performance evaluation of the emerging JPEG XT image compression standard. In: IEEE MMSP, pp 1–6 (2014)Google Scholar
  25. 25.
    Reinhard, E., Stark, M., Shirley, P., Ferwerda, J.: Photographic tone reproduction for digital images. ACM Trans. Graph. 21(3), 267 (2002). doi: 10.1145/566654.566575 CrossRefGoogle Scholar
  26. 26.
    Richter, T.: Backwards compatible coding of high dynamic range images with JPEG. In: Data Compression Conference (DCC), pp 153–160. (2013a). doi: 10.1109/DCC.2013.24
  27. 27.
    Richter, T.: On the standardization of the JPEG XT image compression. In: Picture Coding Symposium (PCS), pp 37–40. (2013b). doi:/DOIurl10.1109/PCS.2013.6737677Google Scholar
  28. 28.
    Richter, T.: On the integer coding profile of JPEG XT. In: SPIE Applications Of Digital Image Processing XXXVII, vol 9217. (2014). doi: 10.1117/12.2060316
  29. 29.
    Richter, T., Artusi, A., Agostinelli, M.: Information technology: Scalable compression and coding of continuous-tone still images, HDR floating point coding. International Organization for Standardization - ISO/IEC 18477-7 (to appear)Google Scholar
  30. 30.
    Richter, T,, Husak, W., Ninan, A., Ten, A., Jia, W., Korshunov, P., Ebrahimi, T., Artusi, A., Agostinelli, M.: Information technology: Scalable compression and coding of continuous-tone still images, extensions for high-dynamic range images. International Organization for Standardization-ISO/IEC 18477-2 (to appear)Google Scholar
  31. 31.
    Richter, T., Ogawa, S.: Information technology: Scalable compression and coding of continuous-tone still images, IDR integer coding. International Organization for Standardization-ISO/IEC 18477-6 (to appeara)Google Scholar
  32. 32.
    Richter, T., Ogawa, S.: Information technology: Scalable compression and coding of continuous-tone still images, lossless and near-lossless coding. International Organization for Standardization-ISO/IEC 18477-8 (to appearb)Google Scholar
  33. 33.
    Richter, T., Schelkens, P., Ishikawa, T.: Information technology: Scalable compression and coding of continuous-tone still images, box file format. International Organization for Standardization-ISO/IEC 18477-3 (to appear)Google Scholar
  34. 34.
    Richter, T., Ten, A., Artusi, A.: Information technology: Scalable compression and coding of continuous-tone still images, conformance testing and evaluation. International Organization for Standardization-ISO/IEC 18477-4 (to appeara)Google Scholar
  35. 35.
    Richter, T., Ten, A., Artusi, A.: Information technology: Scalable compression and coding of continuous-tone still images, reference software implementation. International Organization for Standardization-ISO/IEC 18477-5 (to appearb)Google Scholar
  36. 36.
    SIM2.: SIM2 HDR display. (2015).
  37. 37.
    Spaulding, K., Woolfe, G.J,, Joshi, R.L.: Using a residual image to extend the color gamut and dynamic range of an sRGB image. In: Proc. of IS&T PICS Conference, pp 307–314 (2003)Google Scholar
  38. 38.
    Valenzise, G., De Simone, F., Lauga, P., Dufaux, F.: Performance evaluation of objective quality metrics for HDR image compression. In: Proc. SPIE 9217, Applications of Digital Image Processing XXXVII, pp 92,170C–92,170C (2014)Google Scholar
  39. 39.
    Wallace, G.: The JPEG still picture compression standard. IEEE Trans. Consum. Electron. 38(1), xviii- xxxiv (1992)Google Scholar
  40. 40.
    Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004). doi: 10.1109/TIP.2003.819861 CrossRefGoogle Scholar
  41. 41.
    Ward, G., Simmons, M.: JPEG-HDR: a backwards-compatible, high dynamic range extension to JPEG. In: ACM SIGGRAPH 2006 Courses. (2006). doi: 10.1145/1185657.1185685.
  42. 42.
    Ward-Larson, G.: LogLuv encoding for full-gamut, high-dynamic range images. J. Graph Tools 3(1), 15–31 (1998). doi: 10.1080/10867651.1998.10487485 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.University of GironaGironaSpain
  2. 2.Computer LaboratoryUniversity of CambridgeCambridgeUK
  3. 3.University of StuttgartStuttgartGermany
  4. 4.Multimedia Signal Processing Group (MMSPG), EPFLLausanneSwitzerland
  5. 5.Idiap Research InstituteMartignySwitzerland
  6. 6.Trellis Management LtdTortolaBritish Virgin Islands
  7. 7.Dolby LaboratoriesSan FranciscoUSA

Personalised recommendations