Journal of Real-Time Image Processing

, Volume 16, Issue 2, pp 243–253 | Cite as

Real-time multi-class object detection using two-dimensional index

  • Yumin Dou
  • Pei Xu
  • Mao YeEmail author
  • Xue Li
  • Lishen Pei
  • Xudong Li
Original Research Paper


When there exists only one sample for each category of objects, previous approaches of training multi-class classifiers are not applicable. In this paper, we propose a new template matching method that is both robust and real-time to multi-class object detections. Firstly, object features are encoded as binary codes based on both quantized gradient intensity and quantized gradient orientation mappings. Then, a two-dimensional index table is constructed. This two-dimensional index table has advantages in effectively organizing relationships between the features from the multi-class templates and their corresponding locations in the templates. For a target image, the features are firstly encoded. Then the object is localized by voting based on the queries of features from the index table. Our experiments on two public data sets demonstrate the high efficiency of our method and the superior performance to the state-of-the-art methods.


Object detection Template matching Real time  Two-dimensional index table 



This work was supported in part by the National Natural Science Foundation of China (61375038).


  1. 1.
    Agarwal, S., Awan, A., Roth, D.: Learning to detect objects in images via a sparse, part-based representation. TPAMI 26(11), 1475–1490 (2004)CrossRefGoogle Scholar
  2. 2.
    Babenko, B., Yang, M.H., Belongie, S.: Visual tracking with online multiple instance learning. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR, Miami, FL (2009)Google Scholar
  3. 3.
    Benenson, R., Mathias, M., Timofte, R. et al.: Pedestrian detection at 100 frames per second. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR, Providence, RI (2012)Google Scholar
  4. 4.
    Brunelli, R.: Template Matching Techniques in Computer Vision: Theory and Practice. Wiley, New York (2009)CrossRefGoogle Scholar
  5. 5.
    Quinn, P.C., Eimas, P.D., Tarr, M.J.: Perceptual categorization of cat and dog silhouettes by 3-to-4 month old infants. J. Exp. Child Psychol. 79(1), 78–94 (2001)CrossRefGoogle Scholar
  6. 6.
    Comaniciu, D., Meer, P.: Mean shift analysis and applications. In: The Proceedings of the Seventh IEEE International Conference on Computer Vision (1999)Google Scholar
  7. 7.
    Felzenszwalb, P., Girshick, R., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part based models. TPAMI 32(9), 1627–1645 (2009)CrossRefGoogle Scholar
  8. 8.
    Fidler, S., Boben, M., Leonardis, A.: A coarse-to-fine taxonomy of constellations for fast multi-class object detection. In: ECCV (2010)Google Scholar
  9. 9.
    Fidler, S., Leonardis, A.: Towards scalable representation of object categories: learning a hierarchy of parts. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR, Minneapolis, MN (2007)Google Scholar
  10. 10.
    Gall, J., Lempitsky, V.: On feature combination for multiclass object detection. In: IEEE 12th International Conference on Computer Vision, Kyoto (2009)Google Scholar
  11. 11.
    Hinterstoisser, S., Cagniart, C., Ilic, S.: Gradient response maps for real-time detection of textureless objects. TPAMI 34, 876–888 (2012)CrossRefGoogle Scholar
  12. 12.
    Chen, J.H., Chen, C.S., Chen, Y.S.: Fast algorithm for robust template matching with M-estimators. IEEE Trans. Signal Process. 51(1), 230–243 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Seo, H.J., Milanfar, P.: Training-free, generic object detection using locally adaptive regression kernels. TPAMI 32(9), 1688–1704 (2010)CrossRefGoogle Scholar
  14. 14.
    Kappor, A., Winn, J.: Located Hidden Random Fields: Learning Discriminative Parts for Object Detection. In: ECCV, vol. 3954, pp. 302–315 (2006)Google Scholar
  15. 15.
    Lampert, C.H., Blaschko, M.B., Hofmann, T.: Efficient subwindow search: a branch and bound framework for object localization. TPAMI 31(12), 2129–2142 (2009)CrossRefGoogle Scholar
  16. 16.
    Leibe, B., Leonardis, A., Schiele, B.: Robust object detection with interleaved categorization and segmentation. In: IJCV, pp. 1–23 (2010)Google Scholar
  17. 17.
    Ling, H., Soatto, S., Ramanathan, N., Jacobs, D.W.: Face verification across age progression using discriminative methods. TIFS 5(1), 82–91 (2010)Google Scholar
  18. 18.
    Lowe, D.: Distinctive image features from scale-invariant keypoints. In: IJCV (2004)Google Scholar
  19. 19.
    Masnadi-Shirazi, H., Vasconcelos, N.: High detection-rate cascades for real-time object detection. In: ICCV, pp. 1–6 (2007)Google Scholar
  20. 20.
    Mutch, J., Lowe, D.G.: Multiclass object recognition with sparse, localized features. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 11–18. New York, USA (2006)Google Scholar
  21. 21.
    Opelt, A., Pinz, A., Zisserman, A.: Learning an alphabet of shape and appearance for multi-class object detection. In: IJCV, pp. 16–44 (2008)Google Scholar
  22. 22.
    Razavi, N., Gall, J., Gool, L.V.: Scalable multi-class object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR, Providence, RI (2011)Google Scholar
  23. 23.
    Santner, J., Leistner, C., Saffari, A., Pock, T., Bischof, H.: PROST: parallel robust online simple tracking. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR, San Francisco, CA (2010)Google Scholar
  24. 24.
    Shechtman, E., Irani, M.: Matching local self-similarities across images and videos. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pp. 1–8. Minneapolis, MN (2007)Google Scholar
  25. 25.
    Shechtman, E., Irani, M.: Space–time behavior-based correlation-or-how to tell if two underlying motion fields are similar without computing them. TPAMI 29(11), 2045–2056 (2007)CrossRefGoogle Scholar
  26. 26.
    Sibiryakov, A.: Fast and high-performance template matching method. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR, Providence, RI (2011)Google Scholar
  27. 27.
    Steger, C.: Occlusion clutter, and illumination invariant object recognition. In: IAPRS (2002)Google Scholar
  28. 28.
    Torralba, A., Murphy, K.P., Freeman, W.T.: Sharing visual features for multiclass and multiview object detection. TPAMI 29(5), 854–869 (2007)CrossRefGoogle Scholar
  29. 29.
    Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray scale and rotation invariant texture analysis with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)CrossRefzbMATHGoogle Scholar
  30. 30.
    Chen, J., Shan, S., He, C., Zhao, G., Pietikainen, M., Chen, X., Gao, W.: A robust local image descriptor. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1705–1720 (2010)CrossRefGoogle Scholar
  31. 31.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proc. IEEE Int’l Conf, Computer Vision and Pattern Recognition (2005)Google Scholar
  32. 32.
    Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)CrossRefGoogle Scholar
  33. 33.
    Zitnick, L.: Binary coherent edge descriptors. Eur. Conf. Comput. Vis. 6312, 170–182 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Yumin Dou
    • 1
  • Pei Xu
    • 1
  • Mao Ye
    • 1
    Email author
  • Xue Li
    • 1
  • Lishen Pei
    • 1
  • Xudong Li
    • 1
  1. 1.School of Computer Science and Engineering, Center for RoboticsUniversity of Electronic Science and Technology of ChinaChengduPeople’s Republic of China

Personalised recommendations