Skip to main content
Log in

Object tracking by mean shift and radial basis function neural networks

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

In this paper, a tracker based on mean shift and radial basis function neural networks called MS-RBF is addressed. As its name implies, two independent trackers have been combined and linked together. The mean shift algorithm estimates the target’s location within only two iterations. The scale and orientation of target are computed by exploiting 2-D correlation coefficient between reference and target candidate histograms instead of using Bhattacharyya coefficient. A code optimization strategy, named multiply–add–accumulate (MAC), is proposed to remove useless memory occupation and programmatic operations. MAC implementation has reduced computational load and made overall tracking process faster. The second tracker “RBFNN” has an input feature vector that contains variables such as local contrast, color histogram, gradient, intensity, and spatial frequency. The neural network learns the color and texture features from the target and background. Then, this information is used to detect and track the object in other frames. The neural network employs Epanechnikov activation functions. The features extracted in any frame are clustered by Fuzzy C-Means clustering which produces the means and variances of the clusters. The experimental results show that the proposed tracker can resist to different types of occlusions, sudden movement, and shape deformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Arora, A., Dutta, P., Bapat, S., Kulathumani, V., Zhang, H., Naik, V., et al.: A line in the sand: a wireless sensor network for target detection, classification, and tracking. Comput. Netw. 46, 605–634 (2004)

    Article  Google Scholar 

  2. Velastin, S., Yin, J., Davies, A., Vicencio-Silva, M., Allsop, R., Penn, A.:Automated measurement of crowd density and motion using image processing. In: Proceeding of Seventh International Conference On Road Traffic Monitoring And Control, 26–28 April 1994 (IEE Conference Publication 391) (1994)

  3. Azuma, R.T.: A survey of augmented reality. Presence 6, 355–385 (1997)

    Article  Google Scholar 

  4. Ubillos, R.: Method and apparatus for video editing with video clip representations displayed along a time line. ed: Google Patents (1999)

  5. Mountney, P., Stoyanov, D., Yang, G.-Z.: Three-dimensional tissue deformation recovery and tracking. Sig. Process. Mag. IEEE 27, 14–24 (2010)

    Article  Google Scholar 

  6. Khan, Z.H., Gu, I., Backhouse, A.G.: Robust visual object tracking using multi-mode anisotropic mean shift and particle filters. IEEE Trans.Circ. Syst. Video Technol. 21, 74–87 (2011)

    Article  Google Scholar 

  7. Babu, R.V., Parate, P.: Robust tracking with interest points: a sparse representation approach. Image Vis. Comput. 33, 44–56 (2015)

    Article  Google Scholar 

  8. Zhang, K., Zhang, L., Yang, M.-H.,: Real-time compressive tracking, in Computer Vision–ECCV, 2012, ed: Springer, pp. 864–877 (2012)

  9. Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision, in IJCAI, pp. 674–679 (1981)

  10. Black, M.J., Anandan, P.: The robust estimation of multiple motions: parametric and piecewise-smooth flow fields. Comput. Vis. Image Underst. 63, 75–104 (1996)

    Article  Google Scholar 

  11. Horn, B.K., Schunck, B.G.: Determining optical flow. In: Technical Symposium East, pp. 319–331 (1981)

  12. Yilmaz, A., Li, X., Shah, M.: Contour-based object tracking with occlusion handling in video acquired using mobile cameras. IEEE Trans. Pattern Anal. Mach. Intel. 26, 1531–1536 (2004)

    Article  Google Scholar 

  13. Zhao, P., Zhu, H., Li, H., Shibata, T.: A directional-edge-based real-time object tracking system employing multiple candidate-location generation. IEEE Trans. Circ. Syst. Video Technol. 23, 503–517 (2013)

    Article  Google Scholar 

  14. Botella, G., Martín, H.J.A., Santos, M., Meyer-Baese, U.: FPGA-based multimodal embedded sensor system integrating low-and mid-level vision. Sensors 11, 8164–8179 (2011)

    Article  Google Scholar 

  15. Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intel. 24, 603–619 (2002)

    Article  Google Scholar 

  16. Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based object tracking. IEEE Trans. Pattern Anal. Math. Intel. 25, 564–577 (2003)

    Article  Google Scholar 

  17. Kailath, T.: The divergence and Bhattacharyya distance measures in signal selection. IEEE Trans. Pattern Anal. Mach. Intel. 15, 52–60 (1967)

    Google Scholar 

  18. Bradski, G. R.: Computer vision face tracking for use in a perceptual user interface (1998)

  19. Zivkovic, Z., Krose, B.: An EM-like algorithm for color-histogram-based object tracking. In: Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on, vol. 1, pp. I-798-I-803 (2004).

  20. Carreira-Perpindn, M.: Gaussian mean-shift is an EM algorithm. IEEE Trans. Pattern Anal. Mach. Intel. 29, 767–776 (2007)

    Article  Google Scholar 

  21. Shan, C., Wei, Y., Tan, T., Ojardias, F.: Real time hand tracking by combining particle filtering and mean shift. In: Automatic Face and Gesture Recognition, 2004. Proceedings. Sixth IEEE International Conference on, pp. 669–674 (2004)

  22. Shan, C., Tan, T., Wei, Y.: Real-time hand tracking using a mean shift embedded particle filter. Pattern Recog. 40, 1958–1970 (2007)

    Article  Google Scholar 

  23. Chen, Z.: Bayesian filtering: from Kalman filters to particle filters, and beyond. Statistics 182, 1–69 (2003)

    Article  Google Scholar 

  24. Rowghanian, V., Asl, K.A.: Non iterated mean shift and particle filtering. In: Iranian Conference on Electrical Engineering (ICEE), 22nd, pp. 226–231 (2014)

  25. Chen, Z., Husz, Z.L., Wallace, I., Wallace, A.M.: Video object tracking based on a Chamfer distance transform. In: Image Processing, 2007. ICIP 2007. IEEE International Conference on, 2007, pp. III-357-III-360

  26. Babu, R.V., Suresh, S., Makur, A.: Online adaptive radial basis function networks for robust object tracking. Comput. Vis. Image Underst. 114, 297–310 (2010)

    Article  Google Scholar 

  27. Black, M.J., Jepson, A.D.: Eigentracking: robust matching and tracking of articulated objects using a view-based representation. Int. J. Comput. Vis. 26, 63–84 (1998)

    Article  Google Scholar 

  28. Huang, G.-B., Siew, C.-K.: Extreme learning machine: RBF network case. In: Control, Automation, Robotics and Vision Conference. ICARCV 8th, pp. 1029–1036 (2004)

  29. Bin, Z., Junzheng, W., Jiali, M.: Algorithm of target tracking based on mean shift with RBF neural network. In: Chinese Control Conference ,CCC 27th, pp. 518–521 (2008)

  30. Meyer-Bäse, A., Botella, G., Rybarska-Rusinek, L.: Stochastic stability analysis of competitive neural networks with different time-scales. Neurocomputing 118, 115–118 (2013)

    Article  Google Scholar 

  31. Shi, C., Brodersen, R.W.: Floating-point to fixed-point conversion with decision errors due to quantization. In: Acoustics, Speech, and Signal Processing, 2004. Proceedings.(ICASSP’04). IEEE International Conference on, 2004 vol. 5, pp. V-41-4 (2004)

  32. Botella, G., Meyer-Baese, U., García, A., Rodríguez, M.: Quantization analysis and enhancement of a VLSI gradient-based motion estimation architecture. Digit. Signal Proc. 22, 1174–1187 (2012)

    Article  MathSciNet  Google Scholar 

  33. Bârleanu, A., Băitoiu, V., Stan, A.: Floating-point to fixed-point code conversion with variable trade-off between computational complexity and accuracy loss. In: System Theory, Control, and Computing (ICSTCC), 2011 15th International Conference on, pp. 1–6 (2011)

  34. Oshiro, M., Nishimura, T.: US image improvement using fuzzy Neural Network with Epanechnikov kernel. In: Industrial Electronics, 2009. IECON’09. 35th Annual Conference of IEEE, pp. 2130–2135 (2009)

  35. Jack, K.: Video demystified: a handbook for the digital engineer. Newnes, Boston (2005)

    Google Scholar 

  36. Ning, J., Zhang, L., Zhang, D., Wu, C.: Scale and orientation adaptive mean shift tracking. IET Comput. Vis. 6, 52–61 (2012)

    Article  MathSciNet  Google Scholar 

  37. Ning, J., Zhang, L., Zhang, D., Wu, C.: Robust mean-shift tracking with corrected background–weighted histogram. IET Comput. Vis. 6, 62–69 (2012)

    Article  MathSciNet  Google Scholar 

  38. Asvadi, A., Karami, M., Baleghi, Y.: Efficient object tracking using optimized K-means segmentation and radial basis function neural networks. Int. J. Inf. Commun. Technol. 4(1), 29–39 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahid Rowghanian.

Appendix

Appendix

The following code is in MATLAB programing language. Note that the number of data must be high to see a stable ratio of times.

n = 50,000; x = rand(n,6); mu = rand(1,6);tic; for i = 1:n, t = sqrt(sum((x(i,:) − mu(:)’).^2)); end; t1 = toc;

tic;for i = 1:n, t = (x(i,1) − mu(1))^2 + (x(i, 2) − mu(2))^2 + (x(i,3) − mu(3))^2 + (x(i,4) − mu(4))^2 + (x(i,5) − mu(5))^2 + (x(i,6) − mu(6))^2; t = sqrt(t);end;t2 = toc;

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rowghanian, V., Ansari-Asl, K. Object tracking by mean shift and radial basis function neural networks. J Real-Time Image Proc 15, 799–816 (2018). https://doi.org/10.1007/s11554-015-0524-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-015-0524-4

Keywords

Navigation