3D modelling of laser scanned and photogrammetric data for digital documentation: the Mosteiro da Batalha case study

Abstract

Advances in both terrestrial laser scanning hardware and photogrammetric systems combined are creating increasingly precise and rich 3D coloured data. In this article we show how computer graphics and visualization techniques have played an important role in real-time visualization, data management, modelling, and data fusion in an increasing number of applications such as surveying engineering, structure analysis, architecture, archaeology and cultural heritage. Specifically, we describe the typical modelling steps involved in the creation of a range of digital documents provided by the 3D digitization company Artescan to customers. We present how these modelling steps were applied in the context of creating digital documents used in the preservation of Mosteiro da Batalha.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

References

  1. 1.

    Ahrens, J., Geveci, B., Law, C.: ParaView: An End-user Tool for Large Data Visualization. Visualization Handbook. Elsevier (2005)

  2. 2.

    Aiger, D., Mitra, N.J., Cohen-Or, D.: 4-Points congruent sets for robust pairwise surface registration. In: ACM SIGGRAPH 2008 papers, ACM, pp. 85:1–85:10 (2008)

  3. 3.

    Alba, M., Scaioni, M.: Comparison of techniques for terrestrial laser scanning data georeferencing applied to 3-D modelling of cultural heritage. In: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 36(5/W47), (on CD-ROM, p. 8 (2007)

  4. 4.

    Amenta, N., Bern, M., Kamvysselis, M.: A new Voronoi-based surface reconstruction algorithm. In: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, ACM, SIGGRAPH ’98, pp. 415–421 (1998)

  5. 5.

    Beinat, A., Crosilla, F. Generalized procrustes analysis for size and shape 3-D object reconstruction. In: Proceedings of Optical 3D Measurement Techniques, pp. 345–353 (2001)

  6. 6.

    Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14, 239–256 (1992)

    Article  Google Scholar 

  7. 7.

    Boavida, J., Oliveira, A., Berberan, A.: Dam monitoring using combined terrestrial imaging systems. Civil Engineering Surveyor, pp. 33–38 (2009)

  8. 8.

    Borgeat, L., Godin, G., Blais, F., Massicotte, P., Lahanier, C.: Gold: interactive display of huge colored and textured models. In: ACM SIGGRAPH 2005 Papers, ACM, pp. 869–877 (2005)

  9. 9.

    Cignoni, P., Montani, C., Rocchini, C., Scopigno, R.: External memory management and simplification of huge meshes. IEEE Trans. Vis. Comput. Graphics 9, 525–537 (2003)

    Article  Google Scholar 

  10. 10.

    Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F., Ranzuglia, G.: Meshlab: an open-source mesh processing tool. In: Sixth Eurographics Italian Chapter Conference, pp. 129–136, (2008) http://vcg.isti.cnr.it/Publications/2008/CCCDGR08

  11. 11.

    Curless, B., Levoy, M.: A volumetric method for building complex models from range images. In: SIGGRAPH ’96, ACM, pp. 303–312 (1996)

  12. 12.

    Davis, J., Marschner, S.R., Garr, M., Levoy, M. (2002) Filling holes in complex surfaces using volumetric diffusion. In: 3DPVT, IEEE Computer Society, pp. 428–438

  13. 13.

    Garland, M., Heckbert, PS.: Surface simplification using quadric error metrics. In: SIGGRAPH ’97, ACM Press/Addison-Wesley, pp. 209–216 (1997)

  14. 14.

    Gobbetti, E., Marton, F.: Far voxels: a multiresolution framework for interactive rendering of huge complex 3D models on commodity graphics platforms. In: ACM SIGGRAPH 2005 Papers, ACM, pp. 878–885 (2005)

  15. 15.

    Gruen, A., Akca, D.: Least squares 3D surface matching. In: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 34(5/W16), (on CD-ROM (2004)

  16. 16.

    International Electrotechnical Commission: International standard iec 60825-1 corr1, safety of laser products, 1st August 2008 (2008). http://webstore.iec.ch/p-preview/info_iec60825-1

  17. 17.

    International Society for Photogrammetry and Remote Sensing, Commission V: Close-range sensing: Analysis and applications, working group v/3: Terrestrial laser scanning and 3D imaging. (2009) http://www.commission5.isprs.org/wg3/

  18. 18.

    Isenburg, M., Liu, Y., Shewchuk, J., Snoeyink, J.: Streaming computation of Delaunay triangulations. ACM Trans. Graph. 25:1049–1056 (2006). http://doi.acm.org/10.1145/1141911.1141992

    Google Scholar 

  19. 19.

    Large, A.R.G., Heritage, G.L., Charlton, M.E.: Laser Scanning: The Future, Wiley-Blackwell, pp. 262–271 (2009)

  20. 20.

    Levoy, M., Pulli, K., Curless, B., Rusinkiewicz, S., Koller, D., Pereira, L., Ginzton, M., Anderson, S., Davis, J., Ginsberg, J., Shade, J., Fulk, D.: The digital Michelangelo project: 3D scanning of large statues. In: SIGGRAPH ’00, ACM Press/Addison-Wesley, pp. 131–144 (2000)

  21. 21.

    Luhmann, T., Robson, S., Kyle, S., Harley, I.: Close Range Photogrammetry Principles, Methods and Applications. Whittles, Scotland (2006)

  22. 22.

    Oliveira, A., Boavida, J., Cortesão, L., Gomes, S.: Laser scanning aplicado ao levantamento do património edificado—o caso de estudo do palácio de monserrate. Revista Arte & Construção, pp. 44–48 (2009)

  23. 23.

    Oliveira, J.F., Steed, A.: Determining orientation of laser scanned surfaces. In: SIACG, pp. 281–288 (2002)

  24. 24.

    Petzet, M.: Principles of preservation: an introduction to the international charters for conservation and restoration 40 years after the venice charter. In: International Charters for Conservation and Restoration, Monuments & Sites, vol. I, ICOMOS, München, pp. 7–29, (2004). http://openarchive.icomos.org/432/

  25. 25.

    Pfeifer, N., Briese, C.: Geometrical aspects of airborne and terrestrial laser scanning. In: International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 36, part 3/W52, p 311 (2007)

  26. 26.

    Rieger, P., Studnicka, N., Pfenning-bauer, M., Ullrich, A. Advances in mobile laser scanning data acquisition. In: FIG Congress 2010. Facing the Challenges Building the Capacity (2010)

  27. 27.

    Rusinkiewicz, S., Levoy, M.: Qsplat: A multiresolution point rendering system for large meshes. In: SIGGRAPH ’00, ACM Press/Addison-Wesley, pp. 343–352 (2000)

  28. 28.

    Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algorithm. In: International Conference on 3-D Digital Imaging and Modeling (2001)

  29. 29.

    Schroeder, W., Martin, K., Lorensen, B.: The Visualization Toolkit: An Object-Oriented Approach to 3D Graphics, 4th edn. Kitware Inc. (2006)

  30. 30.

    Taubin, G., Zhang, T., Golub, G.H.: Optimal surface smoothing as filter design. In: Proceedings of the 4th European Conference on Computer Vision, vol. I, Springer, London, UK, ECCV ’96, pp. 283–292 (1996)

  31. 31.

    Thies, M., Spiecker, H.: Evaluation and future prospects of terrestrial laser-scanning for standardized forest inventories. In: Proceedings of the ISPRS Working Group VIII/2 Laser-Scanners for Forest and Landscape Assessment (2004)

  32. 32.

    Ullrich, A., Pfennigbauer, M.: Echo digitization and waveform analysis in airborne and terrestrial laser scanning. In: Fritsch, D. (ed.) Photogrammetric Week ’11, pp. 217–228 (2011)

  33. 33.

    Wand, M., Berner, A., Bokeloh, M., Fleck, A., Hoffmann, M., Jenke, P.: The xgrt system. (2007). http://www.gris.uni-tuebingen.de/xgrt/

  34. 34.

    Wand, M., Berner, A., Bokeloh, M., Fleck, A., Hoffmann, M., Jenke, P., Maier, B., Staneker, D., Schilling, A.: Interactive editing of large point clouds. In: Chen B, Zwicker M, Botsch M, Pajarola R (eds.) Symposium on Point-Based Graphics 2007 : Eurographics/IEEE VGTC Symposium Proceedings, Prague, Czech Republic, pp. 37–46 (2007)

Download references

Acknowledgments

This work was supported by FCT (INESC-ID multiannual funding) through the PIDDAC Program funds. All laser scanning and modelling presented in this article were carried out by Artescan, 3D Scanning. The collaboration between Artescan and INESC-ID Lisboa was partially funded by Artescan and by the Portuguese Foundation for Science and Technology (FCT), VIZIR project grant (PTDC/EIA/66655/2006). In addition, Bruno Araújo would like to thank FCT for doctoral grant reference SFRH/BD/31020/2006. Finally, we would like to thank Dr. Margarita Rova for invaluable comments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to João M. Pereira.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Oliveira, A., Oliveira, J.F., Pereira, J.M. et al. 3D modelling of laser scanned and photogrammetric data for digital documentation: the Mosteiro da Batalha case study. J Real-Time Image Proc 9, 673–688 (2014). https://doi.org/10.1007/s11554-012-0242-0

Download citation

Keywords

  • Laser scanning
  • Photogrammetry
  • 3D modelling
  • CAD
  • Orthophoto
  • Virtual reality