Computer-assisted planning for a concentric tube robotic system in neurosurgery

Abstract

Purpose

Laser-induced thermotherapy in the brain is a minimally invasive procedure to denature tumor tissue. However, irregularly shaped brain tumors cannot be treated using existing commercial systems. Thus, we present a new concept for laser-induced thermotherapy using a concentric tube robotic system. The planning procedure is complex and consists of the optimal distribution of thermal laser ablations within a volume as well as design and configuration parameter optimization of the concentric tube robot.

Methods

We propose a novel computer-assisted planning procedure that decomposes the problem into task- and robot-specific planning and uses a multi-objective particle swarm optimization algorithm with variable length.

Results

The algorithm determines a Pareto-front of optimal ablation distributions for three patient datasets. It considers multiple objectives and determines optimal robot parameters for multiple trajectories to access the tumor volume.

Conclusions

We prove the effectiveness of our planning procedure to enable the treatment of irregularly shaped brain tumors. Multiple trajectories further increase the applicability of the procedure.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Altrogge I, Preusser T, Kröger T, Büskens C, Pereira P, Schmidt D, Peitgen HO (2007) Multiscale optimization of the probe placement for radiofrequency ablation. Acad Radiol 14:1310–24

    PubMed  Article  Google Scholar 

  2. 2.

    Audigier C, Mansi T, Delingette H, Rapaka S, Passerini T, Mihalef V, Jolly MP, Pop R, Diana M, Soler L, Kamen A, Comaniciu D, Ayache N (2017) Comprehensive preclinical evaluation of a multi-physics model of liver tumor radiofrequency ablation. Int J Comput Assist Radiol Surg 12(9):1543–1559

    PubMed  Article  Google Scholar 

  3. 3.

    Baegert C, Villard C, Schreck P, Soler L (2007) Multi-criteria trajectory planning for hepatic radiofrequency ablation. In: Medical image computing and computer-assisted intervention—MICCAI, pp 676–684

  4. 4.

    Baykal C, Torres LG, Alterovitz R (2015) Optimizing design parameters for sets of concentric tube robots using sampling-based motion planning. In: IEEE international conference on intelligent robots and systems, pp 4381–4387

  5. 5.

    Bedell C, Lock J, Gosline AH, Dupont PE (2012) Design optimization of concentric tube robots based on task and anatomical constraints. In: IEEE international conference on robotics and automation, pp 398–403

  6. 6.

    Bergeles C, Gosline AH, Vasilyev NV, Codd PJ, del Nido PJ, Dupont PE (2015) Concentric tube robot design and optimization based on task and anatomical constraints. IEEE Trans Robot 31(1):67–84

    PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Burdette EC, Rucker DC, Prakash P, Diederich CJ, Croom JM, Clarke C, Stolka P, Juang T, Boctor EM, Webster III RJ (2010) The ACUSITT ultrasonic ablator: the first steerable needle with an integrated interventional tool. In: SPIE medical imaging, pp 1–10

  8. 8.

    Burgner J, Gilbert HB, Webster III RJ (2013) On the computational design of concentric tube robots: incorporating volume-based objectives. In: IEEE international conference on robotics and automation, pp 1193–1198

  9. 9.

    Burgner-Kahrs J, Rucker DC, Choset H (2015) Continuum robots for medical applications: a survey. IEEE Trans Robot 31(6):1261–1280

    Article  Google Scholar 

  10. 10.

    Chen CCR, Miga MI, Galloway RL (2009) Optimizing electrode placement using finite-element models in radiofrequency ablation treatment planning. IEEE Trans Biomed Eng 56(2):237–245

    PubMed  Article  Google Scholar 

  11. 11.

    Comber DB, Slightam JE, Gervasi VR, Neimat JS, Barth EJ (2016) Design, additive manufacture, and control of a pneumatic MR-compatible needle driver. IEEE Trans Robot 32(1):138–149

    PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Delorme M, Iori M, Martello S (2015) Bin packing and cutting stock problems: mathematical models and exact algorithms. Eur J Oper Res 255(1):1–20

    Article  Google Scholar 

  13. 13.

    Granna J, Graf A, Nabavi A, Burgner-Kahrs J (2017) A manual actuation system for laser induced thermal therapy of malignant brain tumors. In: Proceedings of the annual meeting of the german society for computer- and robot-assisted surgery, pp 125–130

  14. 14.

    Granna J, Nabavi A, Burgner-Kahrs J (2017) Toward computer-assisted planning for interstitial laser ablation of malignant brain tumors using a tubular continuum robot. In: Medical image computing and computer-assisted intervention—MICCAI, pp 557–565

    Google Scholar 

  15. 15.

    Graves C, Slocum A, Gupta R, Walsh CJ (2012) Towards a compact robotically steerable thermal ablation probe. In: IEEE international conference on robotics and automation, pp 709–714

  16. 16.

    Ha J, Park FC, Dupont PE (2014) Achieving elastic stability of concentric tube robots through optimization of tube precurvature. In: IEEE/RSJ international conference on intelligent robots and systems, pp 864–870

  17. 17.

    Kahrs LA, Burgner J, Klenzner T, Raczkowsky J, Schipper J, Wörn H (2010) Planning and simulation of microsurgical laser bone ablation. Int J Comput Assist Radiol Surg 5(2):155–162

    PubMed  Article  Google Scholar 

  18. 18.

    Kapoor A, Li M, Wood B (2011) Mixed variable optimization for radio frequency ablation planning. In: SPIE medical imaging, pp 1–7

  19. 19.

    Kennedy J, Eberhart R (1995) Particle swarm optimization. In: IEEE international conference on neural networks, pp 1942–1948

  20. 20.

    Li G, Su H, Cole GA, Shang W, Harrington K, Camilo A, Pilitsis JG, Fischer GS (2015) Robotic system for MRI-guided stereotactic neurosurgery. IEEE Trans Biomed Eng 62(4):1077–1088

    PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    McCreedy ES, Cheng R, Hemler PF, Viswanathan A, Wood BJ, McAuliffe MJ (2006) Radio frequency ablation registration, segmentation, and fusion tool. IEEE Trans Inf Technol Biomed 10(3):490–496

    PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Mensel B, Weigel C, Hosten N (2006) Laser-induced thermotherapy. Recent Res Cancer Res 167:69–75

    Article  Google Scholar 

  23. 23.

    Motkoski JW, Yang FW, Lwu SHH, Sutherland GR (2013) Toward robot-assisted neurosurgical lasers. IEEE Trans Biomed Eng 60(4):892–898

    PubMed  Article  Google Scholar 

  24. 24.

    Mukhopadhyay A, Mandal M (2014) Identifying non-redundant gene markers from microarray data: a multiobjective variable length PSO-based approach. IEEE Trans Comput Biol Bioinform 11(6):1545–5963

    Article  Google Scholar 

  25. 25.

    Ren H, Campos-Nanez E, Yaniv Z, Banovac F, Abeledo H, Hata N, Cleary K (2014) Treatment planning and image guidance for radiofrequency ablation of large tumors. IEEE J Biomed Health Inf 18(3):920–928

    Article  Google Scholar 

  26. 26.

    Ren H, Guo W, Sam Ge S, Lim W (2014) Coverage planning in computer-assisted ablation based on genetic algorithm. Comput Biol Med 49(1):36–45

    PubMed  Article  Google Scholar 

  27. 27.

    Rezapour M, Leuthardt E, Gorlewicz LJ (2016) Design of a steerable guide for laser interstitial thermal therapy of brain tumors. J Med Dev 10(3):1–2

    Google Scholar 

  28. 28.

    Su B, Tang J, Liao H (2015) Automatic laser ablation control algorithm for an novel endoscopic laser ablation end effector for precision neurosurgery. In: IEEE international conference on intelligent robots and systems, pp 4362–4367

  29. 29.

    Swaney PJ, Burgner J, Pheiffer TS, Rucker DC, Gilbert HB, Ondrake JE, Simpson AL, Burdette EC, Miga MI, Webster III RJ (2012) Tracked 3D ultrasound targeting with an active Cannula. In: SPIE medical imaging, pp 1–9

  30. 30.

    Tani S, Tatli S, Hata N, Garcia-Rojas X, Olubiyi OI, Silverman SG, Tokuda J (2016) Three-dimensional quantitative assessment of ablation margins based on registration of pre- and post-procedural MRI and distance map. Int J Comput Assist Radiol Surg 11(6):1133–1142

    PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    Xue B, Ma X, Wang H, Gu J, Li Y (2014) Improved variable-length particle swarm optimization for structure-adjustable extreme learning machine. Control Intell Syst 42(4):1–9

    CAS  Google Scholar 

Download references

Funding

This research was supported in parts by the International Neurobionics Foundation and by the German Research Foundation under Award No. BU-2935/1-1.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Josephine Granna.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Granna, J., Nabavi, A. & Burgner-Kahrs, J. Computer-assisted planning for a concentric tube robotic system in neurosurgery. Int J CARS 14, 335–344 (2019). https://doi.org/10.1007/s11548-018-1890-8

Download citation

Keywords

  • Minimally invasive surgery
  • Concentric tube robot
  • Planning
  • Neurosurgery
  • Robotic-surgery