Skip to main content

Advertisement

Log in

FCN-based approach for the automatic segmentation of bone surfaces in ultrasound images

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

A new algorithm, based on fully convolutional networks (FCN), is proposed for the automatic localization of the bone interface in ultrasound (US) images. The aim of this paper is to compare and validate this method with (1) a manual segmentation and (2) a state-of-the-art method called confidence in phase symmetry (CPS).

Methods

The dataset used for this study was composed of 1738 US images collected from three volunteers and manually delineated by three experts. The inter- and intra-observer variabilities of this manual delineation were assessed. Images having annotations with an inter-observer variability higher than a confidence threshold were rejected, resulting in 1287 images. Both FCN-based and CPS approaches were studied and compared to the average inter-observer segmentation according to six criteria: recall, precision, F1 score, accuracy, specificity and root-mean-square error (RMSE).

Results

The intra- and inter-observer variabilities were inferior to 1 mm for 90% of manual annotations. The RMSE was 1.32 ± 3.70  mm and 5.00 ± 7.70 mm for, respectively, the FCN-based approach and the CPS algorithm. The mean recall, precision, F1 score, accuracy and specificity were, respectively, 62%, 64%, 57%, 80% and 83% for the FCN-based approach and 66%, 34%, 41%, 52% and 43% for the CPS algorithm.

Conclusion

The FCN-based approach outperforms the CPS algorithm, and the obtained RMSE is similar to the manual segmentation uncertainty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Joskowicz L, Hazan EJ (2016) Computer aided orthopaedic surgery: incremental shift or paradigm change? Med Image Anal 33:84–90. https://doi.org/10.1016/j.media.2016.06.036

    Article  PubMed  Google Scholar 

  2. Sugano N (2013) Computer-assisted orthopaedic surgery and robotic surgery in total hip arthroplasty. Clin Orthop Surg. https://doi.org/10.4055/cios.2013.5.1.1

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sugano N (2003) Computer-assisted orthopedic surgery. J Orthop Sci 8:442–448. https://doi.org/10.1007/s10776-002-0623-6

    Article  PubMed  Google Scholar 

  4. Dib Z, Dardenne G, Poirier N, Huet P-Y, Lefevre C, Stindel E (2013) Detection of the hip center in computer-assisted surgery: an in vitro assessment study. IRBM 34:319–321. https://doi.org/10.1016/j.irbm.2013.08.005

    Article  Google Scholar 

  5. Stindel E, Gil D, Briard J-L, Merloz P, Dé F, Dubrana R, Lefevre C (2005) Detection of the center of the hip joint in computer-assisted surgery: an evaluation study of the surgetics algorithm. Comput Aided Surg 10:133–139. https://doi.org/10.1080/10929080500229975

    Article  PubMed  Google Scholar 

  6. Stindel E, Briard J, Lverloz P, Dubrana F, Troccaz J (2002) Biomedical pear bone morphing: 3D morphological data for total knee arthroplasty. Comput Aided Surg 7:156–168. https://doi.org/10.3109/10929080209146026

    Article  CAS  PubMed  Google Scholar 

  7. Hacihaliloglu I (2017) Ultrasound imaging and segmentation of bone surfaces: a review. Technology 5:74–80. https://doi.org/10.1142/S2339547817300049

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mercier L, Langø T, Lindseth F, Collins LD (2005) A review of calibration techniques for freehand 3-D ultrasound systems. Ultrasound Med Biol. https://doi.org/10.1016/j.ultrasmedbio.2004.11.001

    Article  Google Scholar 

  9. Ozdemir F, Ozkan E, Goksel O (2016) Graphical modeling of ultrasound propagation in tissue for automatic bone segmentation. In: International conference on medical image computing and computer-assisted intervention, Springer, Cham, pp 256–264. https://doi.org/10.1007/978-3-319-46723-8_30

    Chapter  Google Scholar 

  10. Schumann S (2016) State of the art of ultrasound-based registration in computer assisted orthopedic interventions. Springer, Cham, pp 271–297

    Google Scholar 

  11. Hacihaliloglu I, Abugharbieh R, Hodgson AJ, Rohling RN, Guy P (2012) Automatic bone localization and fracture detection from volumetric ultrasound images using 3-D local phase features. World Fed Ultrasound Med Biol. https://doi.org/10.1016/j.ultrasmedbio.2011.10.009

    Article  Google Scholar 

  12. Jia R, Mellon SJ, Hansjee S, Monk AP, Murray DW, Noble JA (2016) Automatic bone segmentation in ultrasound images using local phase features and dynamic programming. In: 2016 IEEE 13th international symposium on biomedical imaging (ISBI), IEEE, pp 1005–1008

  13. Berton F, Cheriet F, Miron M-C, Laporte C (2016) Segmentation of the spinous process and its acoustic shadow in vertebral ultrasound images. Comput Biol Med. https://doi.org/10.1016/j.compbiomed.2016.03.018

    Article  PubMed  Google Scholar 

  14. Quader N, Hodgson A, Abugharbieh R (2014) Confidence weighted local phase features for robust bone surface segmentation in ultrasound. Lect Notes Comput Sci 8680:76–83. https://doi.org/10.1007/978-3-319-13909-8_10

    Article  Google Scholar 

  15. Karamalis A, Wein W, Klein T, Navab N (2012) Ultrasound confidence maps using random walks. Med Image Anal 16:1101–1112. https://doi.org/10.1016/j.media.2012.07.005

    Article  PubMed  Google Scholar 

  16. Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation. Miccai. https://doi.org/10.1007/978-3-319-24574-4_28

    Article  Google Scholar 

  17. Moeskops P, Wolterink JM, van der Velden BHM, Gilhuijs KGA, Leiner T, Viergever MA, Išgum I (2017) Deep learning for multi-task medical image segmentation in multiple modalities. In: Miccai, pp 478–486

  18. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak JAWM, van Ginneken B, Sánchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal. https://doi.org/10.1016/j.media.2017.07.005

    Article  PubMed  Google Scholar 

  19. Salehi M, Prevost R, Moctezuma JL, Navab N, Wein W (2017) Precise ultrasound bone registration with learning-based segmentation and speed of sound calibration. In: International conference on medical image computing and computer-assisted intervention, Springer, Cham, pp 682–690

    Google Scholar 

  20. Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3431–3440

  21. Jain AK, Taylor RH (2004) Understanding bone responses in B-mode ultrasound images and automatic bone surface extraction using a Bayesian probabilistic framework. Proc SPIE 5373:131–142. https://doi.org/10.1117/12.535984

    Article  Google Scholar 

  22. Baka N, Leenstra S, van Walsum T (2017) Ultrasound aided vertebral level localization for lumbar surgery. IEEE Trans Med Imaging 36:2138–2147. https://doi.org/10.1109/TMI.2017.2738612

    Article  PubMed  Google Scholar 

  23. Galar M, Fernández A, Barrenechea E, Bustince H, Herrera F (2012) A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches. IEEE Trans Syst Man Cybern Part C. https://doi.org/10.1109/tsmcc.2011.2161285

    Article  Google Scholar 

  24. Rushi Longadge M, Snehlata M, Dongre S, Malik L (2013) Class imbalance problem in data mining: review. Int J Comput Sci Netw 2:2277–5420

    Google Scholar 

  25. Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T (2014) Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM international conference on multimedia, ACM, pp 675–678

  26. Karamalis A (2013) Source code: Athanasios Karamalis. http://campar.in.tum.de/Main/AthanasiosKaramalisCode. Accessed 15 Apr 2018

  27. Phasepack 1.5: A toolkit for phase-based feature detection. https://pypi.python.org/pypi/phasepack/1.5

  28. Ben-David S, Shalev-Shwartz S (2014) Understanding machine learning: from theory to algorithms. Cambridge University Press, Cambridge

    Google Scholar 

  29. Chatelain P, Krupa A, Navab N (2015) Confidence-driven control of an ultrasound probe. IEEE Int Conf Robot Autom 2:1410–1424

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Villa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villa, M., Dardenne, G., Nasan, M. et al. FCN-based approach for the automatic segmentation of bone surfaces in ultrasound images. Int J CARS 13, 1707–1716 (2018). https://doi.org/10.1007/s11548-018-1856-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-018-1856-x

Keywords

Navigation