Real-time wireless tumor tracking during breast conserving surgery

  • Natasja Janssen
  • Roeland Eppenga
  • Marie-Jeanne Vrancken Peeters
  • Frederieke van Duijnhoven
  • Hester Oldenburg
  • Jos van der Hage
  • Emiel Rutgers
  • Jan-Jakob Sonke
  • Koert Kuhlmann
  • Theo Ruers
  • Jasper Nijkamp
Original Article
  • 159 Downloads

Abstract

Purpose

To evaluate a novel surgical navigation system for breast conserving surgery (BCS), based on real-time tumor tracking using the Calypso\(\circledR \) 4D Localization System (Varian Medical Systems Inc., USA). Navigation-guided breast conserving surgery (Nav-BCS) was compared to conventional iodine seed-guided BCS (\(^{125}\)I-BCS).

Methods

Two breast phantom types were produced, containing spherical and complex tumors in which wireless transponders (Nav-BCS) or a iodine seed (\(^{125}\)I-BCS) were implanted. For navigation, orthogonal views and 3D volume renders of a CT of the phantom were shown, including a tumor segmentation and a predetermined resection margin. In the same views, a surgical pointer was tracked and visualized. \(^{125}\)I-BCS was performed according to standard protocol. Five surgical breast oncologists first performed a practice session with Nav-BCS, followed by two Nav-BCS and \(^{125}\)I-BCS sessions on spherical and complex tumors. Postoperative CT images of all resection specimens were registered to the preoperative CT. Main outcome measures were the minimum resection margin (in mm) and the excision times.

Results

The rate of incomplete tumor resections was 6.7% for Nav-BCS and 20% for \(^{125}\)I-BCS. The minimum resection margins on the spherical tumors were 3.0 ± 1.4 mm for Nav-BCS and 2.5 ± 1.6 mm for \(^{125}\)I-BCS (p = 0.63). For the complex tumors, these were 2.2 ± 1.1 mm (Nav-BCS) and 0.9 ± 2.4 mm (\(^{125}\)I-BCS) (p = 0.32). Mean excision times on spherical and complex tumors were 9.5 ±  2.7 min and 9.4 ± 2.6 min (Nav-BCS), compared to 5.8 ± 2.2  min and 4.7 ± 3.4 min (\(^{125}\)I-BCS, both (p < 0.05).

Conclusions

The presented surgical navigation system improved the intra-operative awareness about tumor position and orientation, with the potential to improve surgical outcomes for non-palpable breast tumors. Results are positive, and participating surgeons were enthusiastic, but extended surgical experience on real breast tissue is required.

Keywords

EM navigation Tracking Real-time Wireless Breast conserving surgery 

Notes

Compliance with ethical standards

Conflict of interest

Author Jasper Nijkamp has a research agreement with Varian Medical Systems. However, they did not influence the design or execution of the study.

References

  1. 1.
    Pleijhuis RG, Graafland M, de Vries J, Bart J, de Jong JS, van Dam GM (2009) Obtaining adequate surgical margins in breast-conserving therapy for patients with early-stage breast cancer: current modalities and future directions. Ann Surg Oncol 16:2717–2730CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Langhans L, Tvedskov TF, Klausen TL, Jensen M-B, Talman M-L, Vejborg I, Benian C, Roslind A, Hermansen J, Oturai PS, Bentzon N, Kroman N (2017) Radioactive seed localization or wire-guided localization of nonpalpable invasive and in situ breast cancer. Ann Surg 266:29–35CrossRefPubMedGoogle Scholar
  3. 3.
    Janssen NNY, Nijkamp J, Alderliesten T, Loo CE, Rutgers EJT, Sonke J-J, Vrancken Peeters MJTFD (2016) Radioactive seed localization in breast cancer treatment. Br J Surg 103:70–80CrossRefPubMedGoogle Scholar
  4. 4.
    Gray RJ, Salud C, Nguyen K, Dauway E, Friedland J, Berman C, Peltz E, Whitehead G, Cox CE (2001) Randomized prospective evaluation of a novel technique for biopsy or lumpectomy of nonpalpable breast lesions: radioactive seed versus wire localization. Ann Surg Oncol 8:711–715CrossRefPubMedGoogle Scholar
  5. 5.
    van der Noordaa MEM, Pengel KE, Groen E, van Werkhoven E, Rutgers EJT, Loo CE, Vogel W, Vrancken Peeters MJTFD (2015) The use of radioactive iodine-125 seed localization in patients with non-palpable breast cancer: a comparison with the radioguided occult lesion localization with 99m technetium. Eur J Surg Oncol 41:553–558CrossRefPubMedGoogle Scholar
  6. 6.
    van der Heiden-van der Loo M, de Munck L, Visser O, Westenend PJ, van Dalen T, Menke MB, Rutgers EJT, Peeters PH (2012) Variation between hospitals in surgical margins after first breast-conserving surgery in the Netherlands. Breast Cancer Res Treat 131:691–698CrossRefPubMedGoogle Scholar
  7. 7.
    Langhans L, Jensen M-B, Talman MLM, Vejborg I, Kroman N, Tvedskov TF (2017) Reoperation rates in ductal carcinoma in situ vs invasive breast cancer after wire-guided breast-conserving surgery. JAMA Surg 152:378CrossRefPubMedGoogle Scholar
  8. 8.
    Ungi T, Gauvin G, Lasso A, Yeo CT, Pezeshki P, Vaughan T, Carter K, Rudan J, Engel CJ, Fichtinger G (2016) Navigated breast tumor excision using electromagnetically tracked ultrasound and surgical instruments. IEEE Trans Biomed Eng 63:600–606CrossRefPubMedGoogle Scholar
  9. 9.
    Shah AP, Kupelian PA, Willoughby TR, Meeks SL (2011) Expanding the use of real-time electromagnetic tracking in radiation oncology. J Appl Clin Med Phys 12:3590CrossRefPubMedGoogle Scholar
  10. 10.
    Franz AM, Schmitt D, Seitel A, Chatrasingh M, Echner G, Oelfke U, Nill S, Birkfellner W, Maier-Hein L (2014) Standardized accuracy assessment of the Calypso wireless transponder tracking system. Phys Med Biol 59:6797CrossRefPubMedGoogle Scholar
  11. 11.
    Lasso A, Heffter T, Rankin A, Pinter C, Ungi T, Fichtinger G (2014) PLUS: open-source toolkit for ultrasound-guided intervention systems. IEEE Trans Biomed Eng 61:2527–2537CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Morrow M, Van Zee KJ, Solin LJ, Houssami N, Chavez-MacGregor M, Harris JR, Horton J, Hwang S, Johnson PL, Marinovich ML, Schnitt SJ, Wapnir I, Moran MS (2016) Society of Surgical Oncology–American Society for Radiation Oncology–American Society of Clinical Oncology Consensus guideline on margins for breast-conserving surgery with whole-breast irradiation in ductal carcinoma in situ. Pract Radiat Oncol 6:287–295CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Brooke J (1996) SUS: a ‘quick and dirty’ usability scale. In: Jordan PW, Thomas B, Weerdmeester BA, McClelland IL (eds) Usability evaluation in industry. Taylor and Francis, London, pp 189–194Google Scholar
  14. 14.
    Sauro J (2011) A practical guide to the system usability scale: background, benchmarks and best practices. CreateSpace Independent Publishing Platform, DenverGoogle Scholar
  15. 15.
    Lovrics PJ, Cornacchi SD, Vora R, Goldsmith CH, Kahnamoui K (2011) Systematic review of radioguided surgery for non-palpable breast cancer. Eur J Surg Oncol 37:388–397CrossRefPubMedGoogle Scholar
  16. 16.
    Al-Hilli Z, Glazebrook KN, McLaughlin SA, Chan DM, Robinson KT, Giesbrandt JG, Slomka EL, Pizzitola VJ, Gray RJ, Jakub JW (2015) Utilization of multiple I-125 radioactive seeds in the same breast is safe and feasible: a multi-institutional experience. Ann Surg Oncol 22:3350–3355CrossRefPubMedGoogle Scholar
  17. 17.
    den Hartogh MD, Philippens MEP, van Dam IE, Kleynen CE, Tersteeg RJHA, Pijnappel RM, Kotte ANTJ, Verkooijen HM, van den Bosch MAAJ, van Vulpen M, van Asselen B, van den Bongard HD (2014) MRI and CT imaging for preoperative target volume delineation in breast-conserving therapy. Radiat Oncol 9:63CrossRefGoogle Scholar
  18. 18.
    Janssen NNY, ter Beek LC, Loo CE, Winter-Warnars G, Lange CAH, van Loveren M, Alderliesten T, Sonke J-J, Nijkamp J (2017) Supine breast MRI using respiratory triggering. Acad Radiol 24:818–825CrossRefPubMedGoogle Scholar
  19. 19.
    Nijkamp J, Kuhlmann K, Sonke J-J, Ruers T (2016) Image-guided navigation surgery for pelvic malignancies using electromagnetic tracking and intra-operative imaging. Int J Comput Assist Radiol Surg 11:S107–S108CrossRefGoogle Scholar
  20. 20.
    Lugez E, Sadjadi H, Pichora DR, Ellis RE, Akl SG, Fichtinger G (2015) Electromagnetic tracking in surgical and interventional environments: usability study. Int J Comput Assist Radiol Surg 10:253–262CrossRefPubMedGoogle Scholar
  21. 21.
    Franz AM, Haidegger T, Birkfellner W, Cleary L, Peters TM, Maier-Hein L (2014) Electromagnetic tracking in medicine—a review of technology, validation, and applications. IEEE Trans Med Imaging 33:1702–1725CrossRefPubMedGoogle Scholar
  22. 22.
    Seeberger R, Kane G, Hoffmann J, Eggers G (2012) Accuracy assessment for navigated maxillo-facial surgery using an electromagnetic tracking device. J Cranio-Maxillofac Surg 40:156–161CrossRefGoogle Scholar
  23. 23.
    Litzenberg DW, Willoughby TR, Balter JM, Sandler HM, Wei J, Kupelian PA, Cunningham AA, Bock A, Aubin M, Roach M, Shinohara K, Pouliot J (2007) Positional stability of electromagnetic transponders used for prostate localization and continuous, real-time tracking. Int J Radiat Oncol Biol Phys 68:1199–1206CrossRefPubMedGoogle Scholar
  24. 24.
    Alderliesten T, Loo CE, Pengel KE, Rutgers EJT, Gilhuijs KGA, Vrancken Peeters MJTFD (2011) Radioactive seed localization of breast lesions: an adequate localization method without seed migration. Breast J 17:594–601CrossRefPubMedGoogle Scholar

Copyright information

© CARS 2017

Authors and Affiliations

  • Natasja Janssen
    • 1
  • Roeland Eppenga
    • 2
  • Marie-Jeanne Vrancken Peeters
    • 2
  • Frederieke van Duijnhoven
    • 2
  • Hester Oldenburg
    • 2
  • Jos van der Hage
    • 2
  • Emiel Rutgers
    • 2
  • Jan-Jakob Sonke
    • 1
  • Koert Kuhlmann
    • 2
  • Theo Ruers
    • 2
    • 3
  • Jasper Nijkamp
    • 2
  1. 1.Department of Radiation OncologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
  2. 2.Department of Surgical OncologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
  3. 3.Nanobiophysics Group, MIRA InstituteUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations