Planning of skull reconstruction based on a statistical shape model combined with geometric morphometrics

  • Marc Anton Fuessinger
  • Steffen Schwarz
  • Carl-Peter Cornelius
  • Marc Christian Metzger
  • Edward EllisIII
  • Florian Probst
  • Wiebke Semper-Hogg
  • Mathieu Gass
  • Stefan Schlager
Original Article
  • 217 Downloads

Abstract

Purpose

Virtual reconstruction of large cranial defects is still a challenging task. The current reconstruction procedures depend on the surgeon’s experience and skills in planning the reconstruction based on mirroring and manual adaptation. The aim of this study is to propose and evaluate a computer-based approach employing a statistical shape model (SSM) of the cranial vault.

Methods

An SSM was created based on 131 CT scans of pathologically unaffected adult crania. After segmentation, the resulting surface mesh of one patient was established as template and subsequently registered to the entire sample. Using the registered surface meshes, an SSM was generated capturing the shape variability of the cranial vault. The knowledge about this shape variation in healthy patients was used to estimate the missing parts. The accuracy of the reconstruction was evaluated by using 31 CT scans not included in the SSM. Both unilateral and bilateral bony defects were created on each skull. The reconstruction was performed using the current gold standard of mirroring the intact to the affected side, and the result was compared to the outcome of our proposed SSM-driven method. The accuracy of the reconstruction was determined by calculating the distances to the corresponding parts on the intact skull.

Results

While unilateral defects could be reconstructed with both methods, the reconstruction of bilateral defects was, for obvious reasons, only possible employing the SSM-based method. Comparing all groups, the analysis shows a significantly higher precision of the SSM group, with a mean error of 0.47 mm compared to the mirroring group which exhibited a mean error of 1.13 mm. Reconstructions of bilateral defects yielded only slightly higher estimation errors than those of unilateral defects.

Conclusion

The presented computer-based approach using SSM is a precise and simple tool in the field of computer-assisted surgery. It helps to reconstruct large-size defects of the skull considering the natural asymmetry of the cranium and is not limited to unilateral defects.

Keywords

Statistical shape model (SSM) Computer-assisted surgery (CAS) Virtual defect reconstruction 3D planning 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

References

  1. 1.
    Marsell R, Einhorn TA (2011) The biology of fracture healing. Injury 42(6):551–555CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Ehrenfeld M, Manson PN, Prein J (2012) Principles of internal fixation of the craniomaxillofacial skeleton. AO Foundation, Thieme, StuttgartCrossRefGoogle Scholar
  3. 3.
    Unterhofer C, Wipplinger C, Verius M, Recheis W, Thome C, Ortler M (2017) Reconstruction of large cranial defects with poly-methyl-methacrylate (PMMA) using a rapid prototyping model and a new technique for intraoperative implant modeling. Neurologia i neurochirurgia polska 51(3):214–220CrossRefPubMedGoogle Scholar
  4. 4.
    Toro C, Robiony M, Costa F, Zerman N, Politi M (2007) Feasibility of preoperative planning using anatomical facsimile models for mandibular reconstruction. Head Face Med 3(1):5CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Wagner MEH, Lichtenstein JT, Winkelmann M, H-o Shin, Gellrich N-C, Essig H (2015) Development and first clinical application of automated virtual reconstruction of unilateral midface defects. J Cranio-Maxillofac Surg 43(8):1340–1347CrossRefGoogle Scholar
  6. 6.
    Wilde F, Hanken H, Probst F, Schramm A, Heiland M, Cornelius CP (2015) Multicenter study on the use of patient-specific CAD/CAM reconstruction plates for mandibular reconstruction. Int J Comput Assist Radiol Surg 10(12):2035–2051CrossRefPubMedGoogle Scholar
  7. 7.
    Schramm A, Suarez-Cunqueiro MM, Rücker M, Kokemueller H, Bormann KH, Metzger MC, Gellrich NC (2009) Computer-assisted therapy in orbital and mid-facial reconstructions. Int J Med Robot Comput Assist Surg: MRCAS 5(2):111–124CrossRefGoogle Scholar
  8. 8.
    Schramm A, Wilde F (2011) Computer-assisted reconstruction of the facial skeleton. HNO 59(8):800–806CrossRefPubMedGoogle Scholar
  9. 9.
    Gui H, Yang H, Zhang S, Shen SG, Ye M, Schmelzeisen R (2015) Mirroring tool: The simplest computer-aided simulation technology? J Craniofac Surg 26(7):2115–2119CrossRefPubMedGoogle Scholar
  10. 10.
    Egger J, Gall M, Tax A, Ucal M, Zefferer U, Li X, von Campe G, Schafer U, Schmalstieg D, Chen X (2017) Interactive reconstructions of cranial 3D implants under MeVisLab as an alternative to commercial planning software. PLoS One 12(3):e0172694CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Guevara-Rojas G, Figl M, Schicho K, Seemann R, Traxler H, Vacariu A, Carbon C-C, Ewers R, Watzinger F (2014) Patient-specific polyetheretherketone facial implants in a computer-aided planning workflow. J Oral Maxillofac Surg 72(9):1801–1812CrossRefPubMedGoogle Scholar
  12. 12.
    Lamecker H (2008) Variational and statistical shape modeling for 3D geometry reconstruction. Freie Universität Berlin, BerlinGoogle Scholar
  13. 13.
    Tarsitano A, Ciocca L, Cipriani R, Scotti R, Marchetti C (2015) Mandibular reconstruction using fibula free flap harvested using a customised cutting guide: how we do it. Acta Otorhinolaryngol Italica 35(3):198Google Scholar
  14. 14.
    Wilde F, Schramm A (2016) Computer-aided reconstruction of the facial skeleton: planning and implementation in clinical routine. HNO 64(9):641–649CrossRefPubMedGoogle Scholar
  15. 15.
    Scolozzi P, Terzic A (2011) Mirroring computational planning, navigation guidance system, and intraoperative mobile C-arm cone-beam computed tomography with flat-panel detector: A new rationale in primary and secondary treatment of midfacial fractures? J Oral Maxillofac Surg 69(6):1697–1707CrossRefPubMedGoogle Scholar
  16. 16.
    Wien W (2012) A language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  17. 17.
    Heiland M, Habermann CR, Schmelzle R (2004) Indications and limitations of intraoperative navigation in maxillofacial surgery. J Oral Maxillofac Surg 62(9):1059–1063CrossRefPubMedGoogle Scholar
  18. 18.
    Zachow S (2015) Computational planning in facial surgery. Fac Plast Surg 31(05):446–462CrossRefGoogle Scholar
  19. 19.
    Marreiros FM, Heuzé Y, Verius M, Unterhofer C, Freysinger W, Recheis W (2016) Custom implant design for large cranial defects. Int J Comput Assist Radiol Surg 11(12):2217–2230CrossRefPubMedGoogle Scholar
  20. 20.
    Fisher M, Medina M, Bojovic B, Ahn E, Dorafshar AH (2016) Indications for computer-aided design and manufacturing in congenital craniofacial reconstruction. Craniomaxillofac Trauma Reconstr 9(03):235–241CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Carr JC, Fright WR, Beatson RK (1997) Surface interpolation with radial basis functions for medical imaging. IEEE Trans Med Imag 16(1):96–107CrossRefGoogle Scholar
  22. 22.
    Zhao L, Patel PK, Cohen M (2012) Application of virtual surgical planning with computer assisted design and manufacturing technology to cranio-maxillofacial surgery. Arch Plast Surg 39(4):309–316CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Wu T, Engelhardt M, Fieten L, Popovic A, Radermacher K (2006) Anatomically constrained deformation for design of cranial implant: methodology and validation. In: Medical image computing and computer-assisted intervention–MICCAI 2006, pp 9–16Google Scholar
  24. 24.
    Liao Y-L, Lu C-F, Wu C-T, Lee J-D, Lee S-T, Sun Y-N, Wu Y-T (2013) Using three-dimensional multigrid-based snake and multiresolution image registration for reconstruction of cranial defect. Med Biol Eng Comput 51(1):89–101CrossRefPubMedGoogle Scholar
  25. 25.
    Zachow S, Kubiack K, Malinowski J, Lamecker H, Essig H, Gellrich N (2010) Modellgestützte chirurgische Rekonstruktion komplexer Mittelgesichtsfrakturen. In: Proceedings of the BMT biomed tech, Rostock, 2010. vol (Suppl. 01), pp 107–108Google Scholar
  26. 26.
    Rybak J, Kuss A, Lamecker H, Zachow S, Hege HC, Lienhard M, Singer J, Neubert K, Menzel R (2010) The digital bee brain: integrating and managing neurons in a common 3D reference system. Front Syst Neurosci 4:30PubMedPubMedCentralGoogle Scholar
  27. 27.
    Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin J-C, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M, Buatti J, Aylward S, Miller JV, Pieper S, Kikinis R (2012) 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imag 30(9):1323–1341CrossRefGoogle Scholar
  28. 28.
    Avants BB, Tustison N, Song G (2009) Advanced normalization tools (ANTS). Insight J 2:1–35Google Scholar
  29. 29.
    Luthi M, Albrecht T, Vetter T (2009) Building shape models from lousy data. Med Image Comput Comput Assist Interv 12(Pt 2):1–8PubMedGoogle Scholar
  30. 30.
    Goodall C (1991) Procrustes methods in the statistical analysis of shape. J R Stat Soc Ser B (Methodological) 5(2):285–339Google Scholar
  31. 31.
    Schlager S (2015) RvtkStatismo: Integrating statismo and R using the vtkStandardMeshRepresenter. https://github.com/zarquon42b/RvtkStatismo. Accessed 2015
  32. 32.
    Lüthi M, Blanc R, Albrecht T, Gass T, Goksel O, Büchler P, Kistler M, Bousleiman H, Reyes M, Cattin P (2012) Statismo-a framework for PCA based statistical models. Insight J 1:1–18Google Scholar
  33. 33.
    Moshfeghi M, Ranganath S, Nawyn K (1994) Three-dimensional elastic matching of volumes. IEEE Trans Image Process 3(2):128–138CrossRefPubMedGoogle Scholar
  34. 34.
    Gunz P, Mitteroecker P, Bookstein FL (2005) Semilandmarks in three dimensions. In: Slice DE (ed) Modern morphometrics in physical anthropology. Developments in primatology: progress and prospects. Kluwer Academic/Plenum Publishers, Chicago, pp 73–98CrossRefGoogle Scholar
  35. 35.
    Bookstein FL (1997) Landmark methods for forms without landmarks: morphometrics of group differences in outline shape. Med Image Anal 1(3):225–243CrossRefPubMedGoogle Scholar
  36. 36.
    Meyer M, Barr A, Lee H, Desbrun M (2002) Generalized barycentric coordinates on irregular polygons. J Gr Tools 7(1):13–22CrossRefGoogle Scholar
  37. 37.
    Metzger MC, Hohlweg-Majert B, Schön R, Teschner M, Gellrich N-C, Schmelzeisen R, Gutwald R (2007) Verification of clinical precision after computer-aided reconstruction in craniomaxillofacial surgery. Oral Surg Oral Med Oral Pathol Oral Radiol Endodontol 104(4):e1–e10CrossRefGoogle Scholar
  38. 38.
    Wilde F, Cornelius CP, Schramm A (2014) Computer-assisted mandibular reconstruction using a patient-specific reconstruction plate fabricated with computer-aided design and manufacturing techniques. Craniomaxillofac Trauma Reconstr 7(2):158–166CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Brief J, Hassfeld S, Däuber S, Pernozzoli A, Münchenberg J, Redlich T, Walz M, Krempien R, Weisser H, Poeckler C (2000) 3D norm data: the first step towards semiautomatic virtual craniofacial surgery. Computer aided surgery 5(5):353–358CrossRefPubMedGoogle Scholar
  40. 40.
    Dean D, Min K-J, Bond A (2003) Computer aided design of large-format prefabricated cranial plates. J Craniofac Surg 14(6):819–832CrossRefPubMedGoogle Scholar
  41. 41.
    Semper-Hogg W, Fuessinger MA, Schwarz S, Ellis E, Cornelius C-P, Probst F, Metzger MC, Schlager S (2016) Virtual reconstruction of midface defects using statistical shape models. J Cranio-Maxillo-Fac Surg 45(4):461–466CrossRefGoogle Scholar
  42. 42.
    Schmelzeisen R, Gellrich NC, Schoen R, Gutwald R, Zizelmann C, Schramm A (2004) Navigation-aided reconstruction of medial orbital wall and floor contour in cranio-maxillofacial reconstruction. Injury 35(10):955–962CrossRefPubMedGoogle Scholar
  43. 43.
    Kwon T-G, Park H-S, Ryoo H-M, Lee S-H (2006) A comparison of craniofacial morphology in patients with and without facial asymmetry–a three-dimensional analysis with computed tomography. Int J Oral Maxillofac Surg 35(1):43–48CrossRefPubMedGoogle Scholar
  44. 44.
    Metzger M, Bittermann G, Dannenberg L, Schmelzeisen R, Gellrich N-C, Hohlweg-Majert B, Scheifele C (2013) Design and development of a virtual anatomic atlas of the human skull for automatic segmentation in computer-assisted surgery, preoperative planning, and navigation. Int J Comput Assist Radiol Surg 8(5):691–702CrossRefPubMedGoogle Scholar
  45. 45.
    Besson A, Leger J, Doual A (2000) A study of craniofacial asymmetry using computed tomography. Bulletin du Groupement international pour la recherche scientifique en stomatologie & odontologie 43(2):68–73Google Scholar
  46. 46.
    Katsumata A, Fujishita M, Maeda M, Ariji Y, Ariji E, Langlais RP (2005) 3D-CT evaluation of facial asymmetry. Oral Surg Oral Med Oral Pathol Oral Radiol Endodontol 99(2):212–220CrossRefGoogle Scholar

Copyright information

© CARS 2017

Authors and Affiliations

  • Marc Anton Fuessinger
    • 1
  • Steffen Schwarz
    • 1
  • Carl-Peter Cornelius
    • 3
  • Marc Christian Metzger
    • 1
  • Edward EllisIII
    • 4
  • Florian Probst
    • 3
  • Wiebke Semper-Hogg
    • 1
  • Mathieu Gass
    • 1
  • Stefan Schlager
    • 2
  1. 1.Department of Oral and Maxillofacial SurgeryAlbert-Ludwigs University FreiburgFreiburgGermany
  2. 2.Department of Physical AnthropologyAlbert-Ludwigs University FreiburgFreiburgGermany
  3. 3.Department of Oral and Maxillofacial SurgeryLudwig-Maximilians-University MunichMunichGermany
  4. 4.Department of Oral and Maxillofacial SurgeryUniversity of Texas Health Science Center at San AntonioSan AntonioUSA

Personalised recommendations