Skip to main content

Advertisement

Log in

A methodological, task-based approach to Procedure-Specific Simulations training

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Procedure-Specific Simulations (PSS) are 3D realistic simulations that provide a platform to practice complete surgical procedures in a virtual-reality environment. While PSS have the potential to improve surgeons’ proficiency, there are no existing standards or guidelines for PSS development in a structured manner.

Method

We employ a unique platform inspired by game design to develop virtual reality simulations in three dimensions of urethrovesical anastomosis during radical prostatectomy. 3D visualization is supported by a stereo vision, providing a fully realistic view of the simulation. The software can be executed for any robotic surgery platform. Specifically, we tested the simulation under windows environment on the RobotiX Mentor.

Result

Using urethrovesical anastomosis during radical prostatectomy simulation as a representative example, we present a task-based methodological approach to PSS training. The methodology provides tasks in increasing levels of difficulty from a novice level of basic anatomy identification, to an expert level that permits testing new surgical approaches.

Conclusion

The modular methodology presented here can be easily extended to support more complex tasks. We foresee this methodology as a tool used to integrate PSS as a complementary training process for surgical procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abbou CC, Hoznek A, Salomon L, Olsson LE, Lobontiu A, Saint F, Cicco A, Antiphon P, Chopin D (2001) Laparoscopic radical prostatectomy with a remote controlled robot. J Urol 165(6):1964–1966

    Article  CAS  PubMed  Google Scholar 

  2. Ahmed K, Khan R, Mottrie A, Lovegrove C, Abaza R, Ahlawat R, Ahlering T, Ahlgren G, Artibani W, Barret E, Cathelineau X, Challacombe B, Coloby P, Khan MS, Hubert J, Michel MS, Montorsi F, Murphy D, Palou J, Patel V, Piechaud PT, Van Poppel H, Rischmann P, Sanchez-Salas R, Siemer S, Stoeckle M, Stolzenburg JU, Terrier JE, Thüroff JW, Vaessen C, Van Der Poel HG, Van Cleynenbreugel B, Volpe A, Wagner C, Wiklund P, Wilson T, Wirth M, Witt J, Dasgupta P (2015) Development of a standardised training curriculum for robotic surgery: a consensus statement from an international multidisciplinary group of experts. BJU Int 116(1):93–101

    Article  PubMed  Google Scholar 

  3. Amiran M, Lindner S, Trabulsi E, Lallas C (2014) Surgical suturing training with virtual reality simulation versus dry lab practice: an evaluation of performance improvement, content, and face validity. J Robot Surg 8(4):329–335

    Article  Google Scholar 

  4. Aydin A, Shaf AMA, Khan MS, Ahmed K (2016) Current status of simulation and training models in urological surgery: a systematic review. J Urol. doi:10.1016/j.juro.2016.01.131

  5. Brewin J, Ahmed K, Callacombe B (2014) An update and review of simulation in urological training. Int J Surg 12(2):103–108

    Article  PubMed  Google Scholar 

  6. Brinkman WM, Luursema JM, Kengen B, Schout BM, Witjes JA, Bekkers RL (2013) da Vinci skills simulator for assessing learning curve and criterion-based training of robotic basic skills. Urology 81(3):562–566

    Article  PubMed  Google Scholar 

  7. Buchs NC, Pugin F, Volonte F, Morel P (2013) Learning tools and simulation in robotic surgery: state of the art. World J Surg 37(12):2812–2819

    Article  PubMed  Google Scholar 

  8. Buffi N, Van Der Poel H, Guazzoni G, Mottrie A (2013) Methods and priorities of robotic surgery training program. Int Eur Urol 65(1):1–2

    Article  Google Scholar 

  9. Dulan G, Rege RV, Hogg DC, Gilberg-Fisher KM, Arain NA, Tesfay ST, Scott DJ (2012) Developing a comprehensive, proficiency-based training program for robotic surgery. Surgery 152(3):477–488

    Article  PubMed  Google Scholar 

  10. Dulan G, Rege RV, Hogg DC, Gilberg-Fisher KK, Tesfay ST, Scott DJ (2012) Content and face validity of a comprehensive robotic skills training program for general surgery, urology, and gynecology. Am J Surg 203(4):535–539

    Article  PubMed  Google Scholar 

  11. Dulan G, Rege RV, Hogg DC, Gilberg-Fisher KM, Arain NA, Tesfay ST, Scott DJ (2012) Proficiency-based training for robotic surgery: construct validity, workload, and expert levels for nine inanimate exercises. Surg Endosc 26(6):1516–1521

    Article  PubMed  Google Scholar 

  12. Eun D, Bhandari A, Boris R, Lyall K, Bhandari M, Menon M, Rogers CG (2008) novel technique for creating solid renal pseudotumors and renal vein-inferior vena caval pseudothrombus in a porcine and cadaveric model. J Urol 180(4):1510–1514

    Article  PubMed  Google Scholar 

  13. Gallagher AG, Ritter EM, Champion H, Higgins G, Fried MP, Moses G, Smith CD, Satava RM (2005) Virtual reality simulation for the operating room: proficiency-based training as a paradigm shift in surgical skills training. Ann Surg 241(2):364–372

    Article  PubMed  PubMed Central  Google Scholar 

  14. Goh A, Joseph R, O’Malley M, Miles B, Dunkin B (2010) Development and validation of inanimate tasks for robotic surgical skills assessment and training. J Urol 183:e516

    Article  Google Scholar 

  15. Grantcharov TP, Kristiansen VB, Bendix J, Bardram L, Rosenberg J, Funch-Jensen P (2004) Randomized clinical trial of virtual reality simulation for laparoscopic skills training. Br J Surg 91(2):146–150

    Article  CAS  PubMed  Google Scholar 

  16. Hung AJ, Zehnder P, Patil MB, Cai J, Ng CK, Aron M, Gill IS, Desai MM (2011) Face, content and construct validity of a novel robotic surgery simulator. J Urol 186(3):1019–1024

    Article  PubMed  Google Scholar 

  17. Hung AJ, Jayaratna IS, Teruya K, Desai MM, Gill IS, Goh AC (2013) Comparative assessment of three standardized robotic surgery training methods. BJU Int 112(6):864–871

    Article  PubMed  Google Scholar 

  18. Lallas CD (2016) Robotic VR simulation to measure competency: a step in the right direction. Can J Urol 23(1):8167

    PubMed  Google Scholar 

  19. Lee JY, Mucksavage P, Kerbl DC, Huynh VB, Etafy M, McDougall EM (2012) Validation study of a virtual reality robotic simulator-role as an assessment tool? J Urol 187(3):998–1002

    Article  PubMed  Google Scholar 

  20. Lendvay TS, Casale P, Sweet R, Peters C (2008) VR robotic surgery: randomized blinded study of the dV-Trainer robotic simulator. Stud Health Technol Inform 132:242–244

    PubMed  Google Scholar 

  21. Lerner MA, Ayalew M, Peine WJ, Sundaram CP (2010) Does training on a virtual reality robotic simulator improve performance on the da Vinci surgical system? J Endourol 24(3):467–472

    Article  PubMed  Google Scholar 

  22. Li H, Liu C, Zhang H, Xu W, Liu J, Chen Y, Li T, Li B, Wu Z, Xia T (2015) The use of unidirectional barbed suture for urethrovesical anastomosis during robot-assisted radical prostatectomy: a systematic review and meta-analysis of efficacy and safety. PLoS One 10(7):e0131167. doi:10.1371/journal.pone.0131167

  23. Liss MA, Abdelshehid C, Quach S, Lusch A, Graversen J, Landman J, McDougall EM (2012) Validation, correlation, and comparison of the da Vinci trainer™ and the daVinci surgical skills simulator™ using the Mimic™ software for urologic robotic surgical education. J Endourol 26(12):1629–1634

    Article  PubMed  Google Scholar 

  24. Liss MA, McDougall EM (2013) Robotic surgical simulation. Cancer J 19(2):124–129

    Article  PubMed  Google Scholar 

  25. Lyons C, Goldfarb D, Jones SL, Badhiwala N, Miles B, Link R, Dunkin BJ (2013) Which skills really matter? Proving face, content, and construct validity for a commercial robotic simulator. Surg Endosc 27(6):2020–2030

    Article  PubMed  Google Scholar 

  26. Marecik SJ, Prasad LM, Park JJ, Jan A, Chaudhry V (2008) Evaluation of midlevel and upper-level residents performing their first robotic-sutured intestinal anastomosis. Am J Surg 195(3):333–337

    Article  PubMed  Google Scholar 

  27. Moran ME, Marsh C, Perrotti M (2007) Bidirectional-barbed sutured knotless running anastomosis v classic Van Velthoven suturing in a model system. J Endourol 21(10):1175–1178

    Article  PubMed  Google Scholar 

  28. Pasticier G, Rietbergen JB, Guillonneau B, Fromont G, Menon M, Vallancien G (2001) Robotically assisted laparoscopic radical prostatectomy: feasibility study in men. Eur Urol 40(1):70–74

    Article  CAS  PubMed  Google Scholar 

  29. Piechaud T, Saussine C (2006) Laparoscopic radical prostatectomy: transperitoneal approach, epublication WeBSurg.com 6(02). http://www.websurg.com/doi-ot02en302.htm

  30. Schreuder HW, Wolswijk R, Zweemer RP, Schijven MP, Verheijen RH (2012) Training and learning robotic surgery, time for a more structured approach: a systematic review. BJOG 119(2):137–149

  31. Scott DJ, Ritter EM, Tesfay ST, Pimentel EA, Nagji A, Fried GM (2008) Certification pass rate of 100% for fundamentals of laparoscopic surgery skills after proficiency-based training. Surg Endosc 22(8):1887–1893

    Article  PubMed  Google Scholar 

  32. Setty Y (2015) Procedure specific simulations: the future of robotic surgery training. Int J Comput Assist Radiol Surg 10:S45–S47

    Article  Google Scholar 

  33. Seymour NE, Gallagher AG, Roman SA, O’Brien MK, Bansal VK, Andersen DK, Satava RM (2002) Virtual reality training improves operating room performance: results of a randomized, double-blinded study. Ann Surg 236(4):458–464

    Article  PubMed  PubMed Central  Google Scholar 

  34. Siddiqui NY, Galloway ML, Geller EJ, Green IC, Hur HC, Langston K, Pitter MC, Tarr ME, Martino MA (2014) Validity and reliability of the robotic objective structured assessment of technical skills. Obstet Gynecol 123(6):1193–1199

    Article  PubMed  PubMed Central  Google Scholar 

  35. Smith R, Patel V, Satava R (2014) Fundamentals of robotic surgery: a course of basic robotic surgery skills based upon a 14-society consensus template of outcomes measures and curriculum development. Int J Med Robot 10(3):379–384

    Article  PubMed  Google Scholar 

  36. Sroka G, Feldman LS, Vassiliou MC, Kaneva PA, Fayez R, Fried GM (2010) Fundamentals of laparoscopic surgery simulator training to proficiency improves laparoscopic performance in the operating room—a randomized controlled trial. Am J Surg 199(1):115–120

    Article  PubMed  Google Scholar 

  37. Sun AJ, Aron M, Hung AJ (2014) Novel training methods for robotic surgery. Indian J Urol 30(3):333–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sweet RM, Beach R, Sainfort F, Gupta P, Reihsen T, Poniatowski LH, McDougall EM (2012) Introduction and validation of the American Urological Association basic laparoscopic urologic surgery skills curriculum. J Endourol 26(2):190–196

    Article  PubMed  Google Scholar 

  39. Tendick F, Michael D, Tolga G, Murat CC, David F, Xunlei W, Roy E, Mary H, Lawrence WW (2000) A virtual environment testbed for training laparoscopic surgical skills. Presence Teleoperators Virtual Environ 9(3):236–255

    Article  Google Scholar 

  40. Vapenstad C, Buzink SN (2013) Procedural virtual reality simulation in minimally invasive surgery. Surg Endosc 27(2):364–377

    Article  PubMed  Google Scholar 

  41. Whittaker G, Aydin A, Raison N, Kum F, Challacombe B, Khan MS, Dasgupta P, Ahmed K (2016) Validation of the RobotiX Mentor robotic surgery simulator. J Endourol 30(3):338–346

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

YS wishes to thank Bronstein Ran for his support and encouragement in producing this work as well as 3DSystems RobotiX Mentor team members and others involved in developing the discussed module—Bloch Maya, Elgavi Nati, Levin Victor, Schnurr Joey, Segal Hadar, Rubin Inbar and Zaslavski Mordechai. A special thank you to Joey Schnurr for critically reviewing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaki Setty.

Ethics declarations

Conflict of interest

At the time of developing this work, YS was an employee of 3DSystems Healthcare, formally Simbionix, and part of the R&D department’s RobotiX Mentor team. YS took an active part in development of this module as well as the design and implementation of this methodology. The discussed simulation is part of the 3DSystems Healthcare Product-line.

Human and animal rights

No animal or human experiments were conducted as part of this research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Setty, Y., Salzman, O. A methodological, task-based approach to Procedure-Specific Simulations training. Int J CARS 11, 2317–2324 (2016). https://doi.org/10.1007/s11548-016-1450-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-016-1450-z

Keywords

Navigation