Bone marrow magnetic resonance imaging: physiologic and pathologic findings that radiologist should know


Magnetic resonance imaging (MRI) plays a leading role in the non-invasive evaluation of bone marrow (BM). Normal BM pattern depends on the ratio and distribution of yellow and red marrow, which are subject to changes with age, pathologies, and treatments. Neonates show almost entirely red marrow. Over time, yellow marrow conversion takes place with a characteristic sequence leading to a red marrow persistence in proximal metaphyses of long bones. In adults, normal BM is composed of both red (40% water, 40% fat) and yellow marrow (15% water, 80% fat). Due to the higher content of fat, yellow marrow normally appears hyperintense on T1-weighted (T1w) fast spin echo (FSE) sequences and hypo-/iso-intense in short tau inversion recovery (STIR) T2-weighted (T2w); red marrow appears slightly hyperintense in T1w FSE and hyper-/iso-intense in STIR T2w. Pathologic BM has reduced fat and increased water percentages, resulting hypointense in T1w FSE and hyperintense in STIR T2w. In oncologic patients, BM MRI signal largely depends on the treatment (irradiation and/or chemotherapy) and its timing. BM fat and water amount and location in normal red/yellow and pathologic marrow are responsible for different signals in MRI sequences whose knowledge by radiologists may help to differentiate between normal and pathologic findings. Our aim was to discuss and illustrate the MRI of BM physiologic conversion and pathologic reconversion occurring in malignancies and after treatments in cancer patients.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13


  1. 1.

    Travlos GS (2006) Normal structure, function, and histology of the bone marrow. Toxicol Pathol 34:548–565.

    Article  PubMed  Google Scholar 

  2. 2.

    Hwang S, Panicek DM (2007) Magnetic resonance imaging of bone marrow in oncology, Part 1. Skeletal Radiol 36:913–920.

    Article  PubMed  Google Scholar 

  3. 3.

    Vogler JB, Murphy WA (1988) Bone marrow imaging. Radiology 168:679–693.

    Article  PubMed  Google Scholar 

  4. 4.

    Chan BY, Gill KG, Rebsamen SL, Nguyen JC (2016) MR imaging of pediatric bone marrow. RadioGraphics 36:1911–1930.

    Article  PubMed  Google Scholar 

  5. 5.

    Ricci C, Cova M, Kang YS et al (1990) Normal age-related patterns of cellular and fatty bone marrow distribution in the axial skeleton: MR imaging study. Radiology 177:83–88.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Delfaut EM, Beltran J, Johnson G et al (1999) Fat suppression in MR imaging: techniques and pitfalls. RadioGraphics 19:373–382.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Guerini H, Omoumi P, Guichoux F et al (2015) Fat suppression with Dixon techniques in musculoskeletal magnetic resonance imaging: a pictorial review. Semin Musculoskelet Radiol 19:335–347.

    Article  PubMed  Google Scholar 

  8. 8.

    Dietrich O, Biffar A, Reiser M, Baur-Melnyk A (2009) Diffusion-weighted imaging of bone marrow. Semin Musculoskelet Radiol 13:134–144.

    Article  PubMed  Google Scholar 

  9. 9.

    Nouh MR, Eid AF (2015) World Journal of Radiology © 2015. 7:448–459.

  10. 10.

    Daldrup-Link HE, Henning T, Link TM (2007) MR imaging of therapy-induced changes of bone marrow. Eur Radiol 17:743–761.

    Article  PubMed  Google Scholar 

  11. 11.

    Ruschke S, Diefenbach MN, Franz D et al (2018) Molecular in vivo imaging of bone marrow adipose tissue. Curr Mol Biol Rep 4:25–33.

    Article  Google Scholar 

  12. 12.

    Shen W, Chen J, Gantz M et al (2012) MRI-measured pelvic bone marrow adipose tissue is inversely related to DXA-measured bone mineral in younger and older adults. Eur J Clin Nutr 66:983–988.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Yeung DKW, Griffith JF, Antonio GE et al (2005) Osteoporosis is associated with increased marrow fat content and decreased marrow fat unsaturation: a proton MR spectroscopy study. J Magn Reson Imaging 22:279–285.

    Article  PubMed  Google Scholar 

  14. 14.

    Patsch JM, Li X, Baum T et al (2013) Bone marrow fat composition as a novel imaging biomarker in postmenopausal women with prevalent fragility fractures: MARROW FAT COMPOSITION AND FRACTURES. J Bone Miner Res 28:1721–1728.

    Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Karampinos DC, Ruschke S, Dieckmeyer M et al (2018) Quantitative MRI and spectroscopy of bone marrow: quantitative MR of bone marrow. J Magn Reson Imaging 47:332–353.

    Article  PubMed  Google Scholar 

  16. 16.

    Burkhardt R, Kettner G, Böhm W et al (1987) Changes in trabecular bone, hematopoiesis and bone marrow vessels in aplastic anemia, primary osteoporosis, and old age: a comparative histomorphometric study. Bone 8:157–164.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Chen W-T, Shih TT-F, Chen R-C et al (2001) Vertebral bone marrow perfusion evaluated with dynamic contrast-enhanced MR imaging: significance of aging and sex. Radiology 220:213–218.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Geith T, Biffar A, Schmidt G et al (2013) Quantitative analysis of acute benign and malignant vertebral body fractures using dynamic contrast-enhanced MRI. Am J Roentgenol 200:W635–W643.

    Article  Google Scholar 

  19. 19.

    Souza UDO, Oliveira MFD, Heringer LC et al (2018) Sensitivity and specificity of “mini-brain” image pattern to diagnose multiple myeloma and plasmacytoma. Coluna/Columna 17:42–45.

    Article  Google Scholar 

  20. 20.

    Kessler R, Campbell S, Wang D, Bui-Mansfield L (2012) Magnetic resonance imaging of bone marrow: a review—part II. J Am Osteopath Coll Radiol 1:13–25

    Google Scholar 

  21. 21.

    An C, Lee YH, Kim S et al (2013) Characteristic MRI findings of spinal metastases from various primary cancers: retrospective study of pathologically-confirmed cases. J Korean Soc Magn Reson Med 17:8.

    Article  Google Scholar 

  22. 22.

    Fayad LM, Kamel IR, Kawamoto S et al (2005) Distinguishing stress fractures from pathologic fractures: a multimodality approach. Skeletal Radiol 34:245–259.

    Article  PubMed  Google Scholar 

  23. 23.

    Siegel MJ MRI of bone marrow. In: Semantic Sch. Accessed 16 Dec 2018

  24. 24.

    Hwang S, Panicek DM (2007) Magnetic resonance imaging of bone marrow in oncology, Part 2. Skeletal Radiol 36:1017–1027.

    Article  PubMed  Google Scholar 

  25. 25.

    Eustace S, Keogh C, Blake M et al (2001) MR imaging of bone oedema: mechanisms and interpretation. Clin Radiol 56:4–12.

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Baumbach SF, Pfahler V, Bechtold-Dalla Pozza S et al (2020) How we manage bone marrow Edema—an interdisciplinary approach. J Clin Med 9:551.

    Article  PubMed Central  Google Scholar 

  27. 27.

    Byerly D, Bui-Mansfield LT (2018) Patterns of bone marrow Edema on MRI: clues to underlying pathology. Contemp Diagn Radiol 41:1–7.

    Article  Google Scholar 

  28. 28.

    van Vucht N, Santiago R, Lottmann B et al (2019) The Dixon technique for MRI of the bone marrow. Skeletal Radiol 48:1861–1874.

    Article  PubMed  Google Scholar 

  29. 29.

    Wang DT (2012) Magnetic resonance imaging of bone marrow: a review—part I. J Am Osteopath Coll Radiol 1:2–12

    Google Scholar 

  30. 30.

    Małkiewicz A, Dziedzic M (2012) Rekonwersja szpiku—obrazowanie fizjologicznych zmian szpiku w codziennej praktyce. Pol J Radiol 77:45–50.

    Article  PubMed  PubMed Central  Google Scholar 

Download references


Pictures have been developed with the collaboration of Simone Caposano.

Author information




All authors were involved in patient management and wrote and/or reviewed the report. The electronic poster entitled “C-2445—Bone Marrow: is it normal? Physiologic and pathologic Magnetic Resonance Imaging (MRI) findings” has been presented in the Electronic Poster Online System (EPOS™) of the European Society of Radiology and within the scientific and educational programme at the European Congress of Radiology 2019, held on 27 February–3 March 2019, in Vienna, Austria. The poster is available at and can be cited through its unique

Corresponding author

Correspondence to Maria Grazia Chiarilli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chiarilli, M.G., Delli Pizzi, A., Mastrodicasa, D. et al. Bone marrow magnetic resonance imaging: physiologic and pathologic findings that radiologist should know. Radiol med (2020).

Download citation


  • Bone marrow
  • Magnetic resonance imaging
  • Differential diagnosis
  • Musculoskeletal system spine imaging
  • Radiotherapy
  • Chemotherapy