Advertisement

La radiologia medica

, Volume 123, Issue 4, pp 296–304 | Cite as

Short tau inversion recovery in breast diffusion-weighted imaging: signal-to-noise ratio and apparent diffusion coefficients using a breast phantom in comparison with spectral attenuated inversion recovery

  • Tsukasa Yoshida
  • Atsushi Urikura
  • Kensei Shirata
  • Yoshihiro Nakaya
  • Masahiro Endo
  • Shingo Terashima
  • Yoichiro Hosokawa
MAGNETIC RESONANCE IMAGING

Abstract

Objective

This study aimed to compare the signal-to-noise ratios (SNRs) and apparent diffusion coefficients (ADCs) obtained using two fat suppression techniques in breast diffusion-weighted imaging (DWI) of a phantom.

Materials and methods

The breast phantom comprised agar gels with four different concentrations of granulated sugar (samples 1, 2, 3, and 4). DWI with short tau inversion recovery (STIR-DWI) and that with spectral attenuated inversion recovery (SPAIR-DWI) were performed using 3.0-T magnetic resonance imaging, and the obtained SNRs and ADCs were compared. ADCs were also compared between the right and left breast phantoms.

Results

For samples 3 and 4, SNRs obtained using STIR-DWI were lower than those obtained using SPAIR-DWI. For samples 2, 3, and 4, overall ADCs obtained using STIR-DWI were significantly higher than those obtained using SPAIR-DWI (p < 0.001 for all), although no significant difference was observed for sample 1 (p = 0.62). STIR-DWI shows a positive bias and wide limits of agreement in Bland–Altman plot. The coefficients of variance of overall ADCs were good in STIR-DWI and SPAIR-DWI. For all samples, STIR-DWI demonstrated slightly larger percentage differences in ADCs between the right and left phantoms than SPAIR-DWI.

Conclusion

SNRs and ADCs obtained using STIR-DWI are influenced by the T 1 value; a shorter T 1 value decreases SNRs, overestimates ADCs, and induces the measurement error in ADCs. STIR-DWI showed a larger difference in ADCs between the right and left phantoms than SPAIR-DWI.

Keywords

Diffusion-weighted imaging Signal-to-noise ratio Apparent diffusion coefficient Short tau inversion recovery 

Notes

Funding

There is no funding.

Compliance with ethical standards

Conflict of interest

The authors declare that they have conflict of interest.

Ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Yabuuchi H, Matsuo Y, Okafuji T, Kamitani T, Soeda H, Setoguchi T, Sakai S, Hatakenaka M, Kubo M, Sadanaga N, Yamamoto H (2009) Enhanced mass on contrast-enhanced breast MR imaging: lesion characterization using combination of dynamic contrast-enhanced and diffusion-weighted MR images. J Magn Reson Imaging 28:1157–1165CrossRefGoogle Scholar
  2. 2.
    Zhang L, Tang M, Min Z, Lu J, Lei X, Zhang X (2016) Accuracy of combined dynamic contrast-enhanced magnetic resonance imaging and diffusion-weighted imaging for breast cancer detection: a meta-analysis. Acta Radiol 57:651–660CrossRefPubMedGoogle Scholar
  3. 3.
    Lo GG, Ai V, Chan JK, Li KW, Cheung PS, Wong TT, Ma M, Lee R, Chien D (2009) Diffusion-weighted magnetic resonance imaging of breast lesions: first experiences at 3 T. J Comput Assist Tomogr 33:63–69CrossRefPubMedGoogle Scholar
  4. 4.
    Guo Y, Cai YQ, Cai ZL, Gao YG, An NY, Ma L, Mahankali S, Gao JH (2002) Differentiation of clinically benign and malignant breast lesions using diffusion-weighted imaging. J Magn Reson Imaging 16:172–178CrossRefPubMedGoogle Scholar
  5. 5.
    Nogueira L, Brandao S, Matos E, Nunes RG, Ferreira HA, Loureiro J, Ramos I (2014) Diffusion-weighted breast imaging at 3 T: preliminary experience. Clin Radiol 69:378–384CrossRefPubMedGoogle Scholar
  6. 6.
    Richard R, Thomassin I, Chapellier M, Scemama A, de Cremoux P, Varna M, Giacchetti S, Espié M, de Kerviler E, de Bazelaire C (2013) Diffusion-weighted MRI in pretreatment prediction of response to neoadjuvant chemotherapy in patients with breast cancer. Eur Radiol 23:2420–2431CrossRefPubMedGoogle Scholar
  7. 7.
    Subhawong TK, Jacobs MA, Fayad LM (2014) Diffusion-weighted MR imaging for characterizing musculoskeletal lesions. Radiographics 34:1163–1177CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Delfaut EM, Beltran J, Johnson G, Rousseau J, Marchandise X, Cotten A (1999) Fat suppression in MR imaging: techniques and pitfalls. Radiographics 19:373–382CrossRefPubMedGoogle Scholar
  9. 9.
    Lin C, Rogers CD, Majidi S (2015) Fat suppression techniques in breast magnetic resonance imaging: a critical comparison and state of the art. Rep Med Imaging 2015:37–49CrossRefGoogle Scholar
  10. 10.
    Mürtz P, Tsesarskiy M, Kowal A, Träber F, Gieseke J, Willinek WA, Leutner CC, Schmiedel A, Schild HH (2014) Diffusion-weighted magnetic resonance imaging of breast lesions: the influence of different fat-suppression techniques on quantitative measurements and their reproducibility. Eur Radiol 24:2540–2551CrossRefPubMedGoogle Scholar
  11. 11.
    Stadlbauer A, Bernt R, Gruber S, Bogner W, Pinker K, van der Riet W, Haller J, Salomonowitz E (2009) Diffusion-weighted MR imaging with background body signal suppression (DWIBS) for the diagnosis of malignant and benign breast lesions. Eur Radiol 19:2349–2356CrossRefPubMedGoogle Scholar
  12. 12.
    Ouyang Z, Ouyang Y, Zhu M, Lu Y, Zhang Z, Shi J, Li X, Ren G (2014) Diffusion-weighted imaging with fat suppression using short-tau inversion recovery: clinical utility for diagnosis of breast lesions. Clin Radiol 69:e337–e344CrossRefPubMedGoogle Scholar
  13. 13.
    Nogueira L, Brandão S, Nunes RG, Ferreira HA, Loureiro J, Ramos I (2015) Breast DWI at 3 T: influence of the fat-suppression technique on image quality and diagnostic performance. Clin Radiol 70:286–294CrossRefPubMedGoogle Scholar
  14. 14.
    Brandão S, Nogueira L, Matos E, Nunes RG, Ferreira HA, Loureiro J, Ramos I (2015) Fat suppression techniques (STIR vs. SPAIR) on diffusion-weighted imaging of breast lesions at 3.0 T: preliminary experience. Radiol Med 120:705–713CrossRefPubMedGoogle Scholar
  15. 15.
    Norris DG (2001) Implications of bulk motion for diffusion-weighted imaging experiments: effects, mechanisms, and solutions. J Magn Reson Imaging 13:486–495CrossRefPubMedGoogle Scholar
  16. 16.
    Yoshida T, Urikura A, Shirata K, Nakaya Y, Terashima S, Hosokawa Y (2016) Image quality assessment of single-shot turbo spin echo diffusion-weighted imaging with parallel imaging technique: a phantom study. Br J Radiol 89:20160512CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Celik A (2016) Effect of imaging parameters on the accuracy of apparent diffusion coefficient and optimization strategies. Diagn Interv Radiol 22:101–107CrossRefPubMedGoogle Scholar
  18. 18.
    Bogner W, Gruber S, Pinker K, Grabner G, Stadlbauer A, Weber M, Moser E (2009) Diffusion-weighted MR for differentiation of breast lesions at 3.0 T: how does selection of diffusion protocols affect diagnosis? Radiology 253:341–351CrossRefPubMedGoogle Scholar
  19. 19.
    Malyarenko D, Galbán CJ, Londy FJ, Meyer CR, Johnson TD, Rehemtulla A, Ross BD, Chenevert TL (2013) Multi-system repeatability and reproducibility of apparent diffusion coefficient measurement using an ice-water phantom. J Magn Reson Imaging 37:1238–1246CrossRefPubMedGoogle Scholar
  20. 20.
    Hancu I, Govenkar A, Lenkinski RE, Lee SK (2013) On shimming approaches in 3T breast MRI. Magn Reson Med 69:862–867CrossRefPubMedGoogle Scholar
  21. 21.
    Price RR, Axel L, Morgan T, Newman R, Perman W, Schneiders N, Selikson M, Wood M, Thomas SR (1990) Quality assurance methods and phantoms for magnetic resonance imaging: report of AAPM nuclear magnetic resonance Task Group No. 1. Med Phys 17:287–295CrossRefPubMedGoogle Scholar
  22. 22.
    Bland JM, Altman D (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 327:307–310CrossRefGoogle Scholar
  23. 23.
    Thomassin-Naggara I, De Bazelaire C, Chopier J, Bazot M, Marsault C, Trop I (2013) Diffusion-weighted MR imaging of the breast: advantages and pitfalls. Eur J Radiol 82:435–443CrossRefPubMedGoogle Scholar
  24. 24.
    Pereira FP, Martins G, de Oliveira RD (2011) Diffusion magnetic resonance imaging of the breast. Magn Reson Imaging Clin N Am 19:95–110CrossRefPubMedGoogle Scholar
  25. 25.
    Moschetta M, Telegrafo M, Rella L, Ianora AA, Angelelli G (2014) Effect of gadolinium injection on diffusion-weighted imaging with background body signal suppression (DWIBS) imaging of breast lesions. Magn Reson Imaging 32:1242–1246CrossRefPubMedGoogle Scholar
  26. 26.
    Edden RA, Smith SA, Barker PB (2010) Longitudinal and multi-echo transverse relaxation times of normal breast tissue at 3 Tesla. J Magn Reson Imaging 32:982–987CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Giannotti E, Waugh S, Priba L, Davis Z, Crowe E, Vinnicombe S (2015) Assessment and quantification of sources of variability in breast apparent diffusion coefficient (ADC) measurements at diffusion weighted imaging. Eur J Radiol 84:1729–1736CrossRefPubMedGoogle Scholar
  28. 28.
    Zhao J, Guan H, Li M, Gu H, Qin J, Wu X (2016) Significance of the ADC ratio in the differential diagnosis of breast lesions. Acta Radiol 57:422–429CrossRefPubMedGoogle Scholar

Copyright information

© Italian Society of Medical Radiology 2017

Authors and Affiliations

  • Tsukasa Yoshida
    • 1
    • 2
  • Atsushi Urikura
    • 1
  • Kensei Shirata
    • 1
  • Yoshihiro Nakaya
    • 1
  • Masahiro Endo
    • 1
  • Shingo Terashima
    • 3
  • Yoichiro Hosokawa
    • 3
  1. 1.Department of Diagnostic RadiologyShizuoka Cancer CenterSuntoJapan
  2. 2.Department of Radiation ScienceHirosaki University Graduate School of Health SciencesHirosakiJapan
  3. 3.Division of Medical Life Sciences, Department of Radiological Life SciencesHirosaki UniversityHirosakiJapan

Personalised recommendations