Skip to main content
Log in

Classification of noncalcified coronary atherosclerotic plaque components on CT coronary angiography: impact of vascular attenuation and density thresholds

Classificazione delle componenti aterosclerotiche non calcifiche delle placche coronariche mediante angiografia coronarica TC: impatto dell’attenuazione vascolare e delle soglie di densità

  • Cardiac Radiology / Cardioradiologia
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Purpose

The authors assessed the effect of vascular attenuation and density thresholds on the classification of noncalcified plaque by computed tomography coronary angiography (CTCA).

Materials and methods

Thirty patients (men 25; age 59±8 years) with stable angina underwent arterial and delayed CTCA. At sites of atherosclerotic plaque, attenuation values (HU) were measured within the coronary lumen, noncalcified and calcified plaque material and the surrounding epicardial fat. Based on the measured CT attenuation values, coronary plaques were classified as lipid rich (attenuation value below the threshold) or fibrous (attenuation value above the threshold) using 30-HU, 50-HU and 70-HU density thresholds.

Results

One hundred and sixty-seven plaques (117 mixed and 50 noncalcified) were detected and assessed. The attenuation values of mixed plaques were higher than those of exclusively noncalcified plaques in both the arterial (148.3±73.1 HU vs. 106.2±57.9 HU) and delayed (111.4±50.5 HU vs. 64.4±43.4 HU) phases (p<0.01). Using a 50-HU threshold, 12 (7.2%) plaques would be classified as lipid rich on arterial scan compared with 28 (17%) on the delayed-phase scan. Reclassification of these 16 (9.6%) plaques from fibrous to lipid rich involved 4/30 (13%) patients.

Conclusions

Classification of coronary plaques as lipid rich or fibrous based on absolute CT attenuation values is significantly affected by vascular attenuation and density thresholds used for the definition.

Riassunto

Obiettivo

Scopo del presente lavoro è valutare l’effetto dell’attenuazione vascolare e delle soglie di densità sulla classificazione delle placche aterosclerotiche coronariche non calcifiche mediante angiografia coronarica con tomografia computerizzata (CTCA).

Materiali e metodi

Trenta pazienti (maschi 25; età 59±8 anni) con angina stabile sono stati sottoposti a CTCA in fase arteriosa e tardiva. Nei segmenti con aterosclerosi coronarica, è stata misurata l’attenuazione (HU) del lume coronarico, delle componenti calcifica e non calcifica delle placche aterosclerotiche e del tessuto adiposo epicardico adiacente. Sulla base delle attenuazioni misurate, le placche sono state classificate come lipidiche (valori di attenuazione al di sotto della soglia) o fibrose (valori di attenuazione al di sopra della soglia) utilizzando 30 HU, 50 HU e 70 HU come soglie di densità.

Risultati

Sono state rilevate e valutate 167 placche (117 miste e 50 non calcifiche). I valori di attenuazione della placche miste è risultato maggiore di quello delle placche esclusivamente non calcifiche, sia in fase arteriosa (148,3±73,1 HU vs. 106,2±57,9 HU) che in fase tardiva (111,4±50,5 HU vs. 64,4±43,4 HU; p<0,01). Utilizzando una soglia di 50 HU, 12 (7,2%) placche sarebbero state classificate come lipidiche nella fase arteriosa, contro 28 (17%) nella fase tardiva. La riclassificazione di queste 16 (9,6%) placche da fibrose a lipidiche è avvenuta in 4/30 (13%) pazienti.

Conclusioni

La classificazione delle placche coronariche come lipidiche o fibrose sulla base dei valori assoluti di attenuazione è significativamente influenzata dall’attenuazione vascolare e dalle soglie di densità utilizzate per la definizione.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References/Bibliografia

  1. Naghavi M, Falk E, Hecht HS et al (2006) From vulnerable plaque to vulnerable patient-Part III: executive summary of the Screening for Heart Attack Prevention and Education (SHAPE) Task Force report. Am J Cardiol 98:2H–15H

    Article  PubMed  Google Scholar 

  2. Naghavi M, Libby P, Falk E et al (2003) From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: part II. Circulation 108:1772–1778

    Article  PubMed  Google Scholar 

  3. Naghavi M, Libby P, Falk E et al (2003) From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I. Circulation 108:1664–1672

    Article  PubMed  Google Scholar 

  4. Schroeder S, Kopp AF, Baumbach A et al (2001) Noninvasive detection and evaluation of atherosclerotic coronary plaques with multislice computed tomography. J Am Coll Cardiol 37:1430–1435

    Article  PubMed  CAS  Google Scholar 

  5. Becker CR, Nikolaou K, Muders M et al (2003) Ex vivo coronary atherosclerotic plaque characterization with multi-detector-row CT. Eur Radiol 13:2094–2098

    Article  PubMed  Google Scholar 

  6. Nikolaou K, Sagmeister S, Knez A et al (2003) Multidetector-row computed tomography of the coronary arteries: predictive value and quantitative assessment of non-calcified vessel-wall changes. Eur Radiol 13:2505–2512

    Article  PubMed  Google Scholar 

  7. Achenbach S, Moselewski F, Ropers D et al (2004) Detection of calcified and noncalcified coronary atherosclerotic plaque by contrast-enhanced, submillimeter multidetector spiral computed tomography: a segmentbased comparison with intravascular ultrasound. Circulation 109:14–17

    Article  PubMed  Google Scholar 

  8. Leber AW, Knez A, Becker A et al (2004) Accuracy of multidetector spiral computed tomography in identifying and differentiating the composition of coronary atherosclerotic plaques: a comparative study with intracoronary ultrasound. J Am Coll Cardiol 43:1241–1247

    Article  PubMed  Google Scholar 

  9. Springer I, Dewey M (2009) Comparison of multislice computed tomography with intravascular ultrasound for detection and characterization of coronary artery plaques: a systematic review. Eur J Radiol 71:275–282

    Article  PubMed  Google Scholar 

  10. Pohle K, Achenbach S, Macneill B et al (2007) Characterization of noncalcified coronary atherosclerotic plaque by multi-detector row CT: comparison to IVUS. Atherosclerosis 190:174–180

    Article  PubMed  CAS  Google Scholar 

  11. Schroeder S, Flohr T, Kopp AF et al (2001) Accuracy of density measurements within plaques located in artificial coronary arteries by X-ray multislice CT: results of a phantom study. J Comput Assist Tomogr 25:900–906

    Article  PubMed  CAS  Google Scholar 

  12. Cademartiri F, Mollet NR, Runza G et al (2005) Influence of intracoronary attenuation on coronary plaque measurements using multislice computed tomography: observations in an ex vivo model of coronary computed tomography angiography. Eur Radiol 15:1426–1431

    Article  PubMed  Google Scholar 

  13. Cademartiri F, Runza G, Mollet NR et al (2005) Impact of intravascular enhancement, heart rate, and calcium score on diagnostic accuracy in multislice computed tomography coronary angiography. Radiol Med (Torino) 110:42–51

    Google Scholar 

  14. Trabold T, Buchgeister M, Kuttner A et al (2003) Estimation of radiation exposure in 16-detector row computed tomography of the heart with retrospective ECG-gating. Rofo 175:1051–1055

    Article  PubMed  CAS  Google Scholar 

  15. Cademartiri F, Mollet N, van der Lugt A et al (2004) Non-invasive 16-row multislice CT coronary angiography: usefulness of saline chaser. Eur Radiol 14:178–183

    Article  PubMed  Google Scholar 

  16. Austen WG, Edwards JE, Frye RL et al (1975) A reporting system on patients evaluated for coronary artery disease. Report of the Ad Hoc Committee for Grading of Coronary Artery Disease, Council on Cardiovascular Surgery, American Heart Association. Circulation 51:5–40

    CAS  Google Scholar 

  17. Wang ZJ, Coakley FV, Fu Y et al (2008) Renal cyst pseudoenhancement at multidetector CT: what are the effects of number of detectors and peak tube voltage? Radiology 248:910–916

    Article  PubMed  Google Scholar 

  18. Birnbaum BA, Hindman N, Lee J et al (2007) Renal cyst pseudoenhancement: influence of multidetector CT reconstruction algorithm and scanner type in phantom model. Radiology 244:767–775

    Article  PubMed  Google Scholar 

  19. Abdulla C, Kalra MK, Saini S et al (2002) Pseudoenhancement of simulated renal cysts in a phantom using different multidetector CT scanners. AJR Am J Roentgenol 179:1473–1476

    PubMed  Google Scholar 

  20. Luccichenti G, Cademartiri F, Pezzella FR et al (2005) 3D reconstruction techniques made easy: know-how and pictures. Eur Radiol 15:2146–2156

    Article  PubMed  Google Scholar 

  21. Cademartiri F, Runza G, Palumbo A et al (2010) Lumen enhancement influences absolute non calcific plaque density on multislice Computed Tomography Coronary Angiography: ex-vivo validation and in-vivo demonstration. J Cardiovasc Med (Hagerstown) 11:337–344

    Article  Google Scholar 

  22. van Werkhoven JM, Schuijf JD, Gaemperli O et al (2009) Incremental prognostic value of multi-slice computed tomography coronary angiography over coronary artery calcium scoring in patients with suspected coronary artery disease. Eur Heart J 30:2622–2629

    Article  PubMed  Google Scholar 

  23. Motoyama S, Sarai M, Harigaya H et al (2009) Computed tomographic angiography characteristics of atherosclerotic plaques subsequently resulting in acute coronary syndrome. J Am Coll Cardiol 54:49–57

    Article  PubMed  Google Scholar 

  24. Matsumoto N, Sato Y, Yoda S et al (2007) Prognostic value of nonobstructive CT low-dense coronary artery plaques detected by multislice computed tomography. Circ J 71:1898–1903

    Article  PubMed  Google Scholar 

  25. Achenbach S, Marwan M, Ropers D et al (2009) Coronary computed tomography angiography with a consistent dose below 1 mSv using prospectively electrocardiogram-triggered high-pitch spiral acquisition. Eur Heart J 31:340–346

    Article  PubMed  Google Scholar 

  26. Achenbach S, Marwan M, Schepis T et al (2009) High-pitch spiral acquisition: a new scan mode for coronary CT angiography. J Cardiovasc Comput Tomogr 3:117–121

    Article  PubMed  Google Scholar 

  27. Lell M, Marwan M, Schepis T et al (2009) Prospectively ECG-triggered high-pitch spiral acquisition for coronary CT angiography using dual source CT: technique and initial experience. Eur Radiol 19:2576–2583

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Cademartiri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maffei, E., Nieman, K., Martini, C. et al. Classification of noncalcified coronary atherosclerotic plaque components on CT coronary angiography: impact of vascular attenuation and density thresholds. Radiol med 117, 230–241 (2012). https://doi.org/10.1007/s11547-011-0744-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-011-0744-z

Keywords

Parole chiave

Navigation