Optimizing the Timing and Composition of Therapeutic Phage Cocktails: A Control-Theoretic Approach

Abstract

Viruses that infect bacteria, i.e., bacteriophage or ‘phage,’ are increasingly considered as treatment options for the control and clearance of bacterial infections, particularly as compassionate use therapy for multi-drug-resistant infections. In practice, clinical use of phage often involves the application of multiple therapeutic phage, either together or sequentially. However, the selection and timing of therapeutic phage delivery remains largely ad hoc. In this study, we evaluate principles underlying why careful application of multiple phage (i.e., a ‘cocktail’) might lead to therapeutic success in contrast to the failure of single-strain phage therapy to control an infection. First, we use a nonlinear dynamics model of within-host interactions to show that a combination of fast intra-host phage decay, evolution of phage resistance amongst bacteria, and/or compromised immune response might limit the effectiveness of single-strain phage therapy. To resolve these problems, we combine dynamical modeling of phage, bacteria, and host immune cell populations with control-theoretic principles (via optimal control theory) to devise evolutionarily robust phage cocktails and delivery schedules to control the bacterial populations. Our numerical results suggest that optimal administration of single-strain phage therapy may be sufficient for curative outcomes in immunocompetent patients, but may fail in immunodeficient hosts due to phage resistance. We show that optimized treatment with a two-phage cocktail that includes a counter-resistant phage can restore therapeutic efficacy in immunodeficient hosts.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Beretta E, Kuang Y (1998) Modeling and analysis of a marine bacteriophage infection. Math Biosci 149(1):57–76

    MathSciNet  MATH  Article  Google Scholar 

  2. Blayneh K, Cao Y, Kwon HD (2009) Optimal control of vector-borne diseases: treatment and prevention. Discrete Contin Dyn Syst B 11(3):587–611

    MathSciNet  MATH  Article  Google Scholar 

  3. Bol KF, Schreibelt G, Gerritsen WR, De Vries IJM, Figdor CG (2016) Dendritic cell-based immunotherapy: state of the art and beyond. Clin Cancer Res 22(8):1897–1906

    Article  Google Scholar 

  4. Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Cambridge

    Google Scholar 

  5. Camacho E, Melara L, Villalobos M, Wirkus S (2014) Optimal control in the treatment of retinitis pigmentosa. Bull Math Biol 76(2):292–313

    MathSciNet  MATH  Article  Google Scholar 

  6. Castiglione F, Piccoli B (2006) Optimal control in a model of dendritic cell transfection cancer immunotherapy. Bull Math Biol 68(2):255–274

    MathSciNet  MATH  Article  Google Scholar 

  7. Chan BK, Abedon ST, Loc-Carrillo C (2013) Phage cocktails and the future of phage therapy. Fut Microbiol 8(6):769–783

    Article  Google Scholar 

  8. Chan BK, Sistrom M, Wertz JE, Kortright KE, Narayan D, Turner PE (2016) Phage selection restores antibiotic sensitivity in MDR Pseudomonas aeruginosa. Sci Rep 6:26717

    Article  Google Scholar 

  9. Chan BK, Turner PE, Kim S, Mojibian HR, Elefteriades JA, Narayan D (2018) Phage treatment of an aortic graft infected with Pseudomonas aeruginosa. Evol Med Public Health 1:60–66

    Article  Google Scholar 

  10. Croicu AM (2015) Short-and long-term optimal control of a mathematical model for HIV infection of CD\(4^{+}\)T cells. Bull Math Biol 77(11):2035–2071

    MathSciNet  MATH  Article  Google Scholar 

  11. Croicu AM (2019) An optimal control model to reduce and eradicate anthrax disease in herbivorous animals. Bull Math Biol 81(1):235–255

    MathSciNet  MATH  Article  Google Scholar 

  12. Croicu AM, Jarrett AM, Cogan N, Hussaini MY (2017) Short-term antiretroviral treatment recommendations based on sensitivity analysis of a mathematical model for HIV infection of CD\(4^{+}\)T cells. Bull Math Biol 79(11):2649–2671

    MathSciNet  MATH  Article  Google Scholar 

  13. Culshaw RV, Ruan S, Spiteri RJ (2004) Optimal HIV treatment by maximising immune response. J Math Biol 48(5):545–562

    MathSciNet  MATH  Article  Google Scholar 

  14. de Pillis LG, Fister KR, Gu W, Head T, Maples K, Neal T, Murugan A, Kozai K (2008) Optimal control of mixed immunotherapy and chemotherapy of tumors. J Biol Syst 16(01):51–80

    MATH  Article  Google Scholar 

  15. Dedrick RM, Guerrero-Bustamante CA, Garlena RA, Russell DA, Ford K, Harris K, Gilmour KC, Soothill J, Jacobs-Sera D, Schooley RT et al (2019) Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant mycobacterium abscessus. Nat Med 25(5):730

    Article  Google Scholar 

  16. Dufour N, Delattre R, Chevallereau A, Ricard JD, Debarbieux L (2019) Phage therapy of pneumonia is not associated with an overstimulation of the inflammatory response compared to antibiotic treatment in mice. Antimicrob Agents Chemother. https://doi.org/10.1128/AAC.00379-19

    Article  Google Scholar 

  17. Fleming WH, Rishel RW (2012) Deterministic and stochastic optimal control, vol 1. Springer, Berlin

    Google Scholar 

  18. Flores CO, Meyer JR, Valverde S, Farr L, Weitz JS (2011) Statistical structure of host-phage interactions. Proc Nat Acad Sci 108(28):E288–E297

    Article  Google Scholar 

  19. Forti F, Roach DR, Cafora M, Pasini ME, Horner DS, Fiscarelli EV, Rossitto M, Cariani L, Briani F, Debarbieux L, Ghisotti D (2018) Design of a broad-range bacteriophage cocktail that reduces Pseudomonas aeruginosa biofilms and treats acute infections in two animal models. Antimicrob Agents Chemother. https://doi.org/10.1128/AAC.02573-17

    Article  Google Scholar 

  20. Fukuhara H, Ino Y, Todo T (2016) Oncolytic virus therapy: a new era of cancer treatment at dawn. Cancer Sci 107(10):1373–1379

    Article  Google Scholar 

  21. Gakkhar S, Sahani SK (2008) A time delay model for bacteria bacteriophage interaction. J Biol Syst 16(03):445–461

    MATH  Article  Google Scholar 

  22. Goŕski A, Miedzybrodzki R, Borysowski J, Dabrowska K, Wierzbicki P, Ohams M, Korczak-Kowalska G, Olszowska-Zaremba N, Lusiak-Szelachowska M, Klak M et al (2012) Phage as a modulator of immune responses: practical implications for phage therapy. In: Advances in virus research. Elsevier, Amsterdam, vol 83, pp 41–71

  23. Hale M, Wardi Y, Jaleel H, Egerstedt M (2016) Hamiltonian-based algorithm for optimal control. arXiv preprint arXiv:1603.02747

  24. Hashemian N, Armaou A (2017) Stochastic MPC design for a two-component granulation process. In: 2017 American control conference (ACC), IEEE, pp 4386–4391

  25. Hodyra-Stefaniak K, Miernikiewicz P, Drapała J, Drab M, Jończyk-Matysiak E, Lecion D, Kaźmierczak Z, Beta W, Majewska J, Harhala M et al (2015) Mammalian host-versus-phage immune response determines phage fate in vivo. Sci Rep 5:14802

    Article  Google Scholar 

  26. Jang T, Kwon HD, Lee J (2011) Free terminal time optimal control problem of an HIV model based on a conjugate gradient method. Bull Math Biol 73(10):2408–2429

    MathSciNet  MATH  Article  Google Scholar 

  27. Jault P, Leclerc T, Jennes S, Pirnay JP, Que YA, Resch G, Rousseau AF, Ravat F, Carsin H, Floch RL, Schaal JV, Soler C, Fevre C, Arnaud I, Bretaudeau L, Gabard J (2019) Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (phagoburn): a randomised, controlled, double-blind phase 1/2 trial. Lancet Infect Dis 19(1):35–45

    Article  Google Scholar 

  28. Jennes S, Merabishvili M, Soentjens P, Pang KW, Rose T, Keersebilck E, Soete O, François PM, Teodorescu S, Verween G et al (2017) Use of bacteriophages in the treatment of colistin-only-sensitive Pseudomonas aeruginosa septicaemia in a patient with acute kidney injury—a case report. Crit Care 21(1):129

    Article  Google Scholar 

  29. June CH, O’Connor RS, Kawalekar OU, Ghassemi S, Milone MC (2018) CAR T cell immunotherapy for human cancer. Science 359(6382):1361–1365

    Article  Google Scholar 

  30. Kortright KE, Chan BK, Koff JL, Turner PE (2019) Phage therapy: a renewed approach to combat antibiotic-resistant bacteria. Cell Host Microbe 25(2):219–232. https://doi.org/10.1016/j.chom.2019.01.014

    Article  Google Scholar 

  31. Kutter EM, Kuhl SJ, Abedon ST (2015) Re-establishing a place for phage therapy in western medicine. Fut Microbiol 10(5):685–688

    Article  Google Scholar 

  32. Lawler SE, Speranza MC, Cho CF, Chiocca EA (2017) Oncolytic viruses in cancer treatment: a review. JAMA Oncol 3(6):841–849

    Article  Google Scholar 

  33. Ledzewicz U, Naghnaeian M, Schättler H (2012) Optimal response to chemotherapy for a mathematical model of tumor-immune dynamics. J Math Biol 64(3):557–577

    MathSciNet  MATH  Article  Google Scholar 

  34. Leung C, Weitz JS (2017) Modeling the synergistic elimination of bacteria by phage and the innate immune system. J Theor Biol 429:241–252

    MATH  Article  Google Scholar 

  35. Levin BR, Bull J (1996) Phage therapy revisited: the population biology of a bacterial infection and its treatment with bacteriophage and antibiotics. Am Nat 147(6):881–898

    Article  Google Scholar 

  36. Levin BR, Bull JJ (2004) Population and evolutionary dynamics of phage therapy. Nat Rev Microbiol 2(2):166–173

    Article  Google Scholar 

  37. Manzanares W, Lemieux M, Langlois PL, Wischmeyer PE (2016) Probiotic and synbiotic therapy in critical illness: a systematic review and meta-analysis. Crit Care 20(1):262

    Article  Google Scholar 

  38. McCallin S, Sacher JC, Zheng J, Chan BK (2019) Current state of compassionate phage therapy. Viruses. https://doi.org/10.3390/v11040343

    Article  Google Scholar 

  39. Merril CR, Scholl D, Adhya SL (2003) The prospect for bacteriophage therapy in western medicine. Nat Rev Drug Discov 2(6):489

    Article  Google Scholar 

  40. Neilan RLM, Schaefer E, Gaff H, Fister KR, Lenhart S (2010) Modeling optimal intervention strategies for cholera. Bull Math Biol 72(8):2004–2018

    MathSciNet  MATH  Article  Google Scholar 

  41. O’neill J (2014) Antimicrobial resistance: tackling a crisis for the health and wealth of nations. Rev Antimicrob Resist 1(1):1–16

    Google Scholar 

  42. Parker EA, Roy T, D’Adamo CR, Wieland LS (2018) Probiotics and gastrointestinal conditions: an overview of evidence from the cochrane collaboration. Nutrition 45:125–134

    Article  Google Scholar 

  43. Payne RJ, Jansen VA (2001) Understanding bacteriophage therapy as a density-dependent kinetic process. J Theor Biol 208(1):37–48

    Article  Google Scholar 

  44. Peña-Miller R, Lähnemann D, Schulenburg H, Ackermann M, Beardmore R (2012) Selecting against antibiotic-resistant pathogens: optimal treatments in the presence of commensal bacteria. Bull Math Biol 74(4):908–934

    MathSciNet  MATH  Article  Google Scholar 

  45. Pontryagin LS (2018) Mathematical theory of optimal processes. Routledge, New York

    Google Scholar 

  46. Roach DR, Leung CY, Henry M, Morello E, Singh D, Di Santo JP, Weitz JS, Debarbieux L (2017) Synergy between the host immune system and bacteriophage is essential for successful phage therapy against an acute respiratory pathogen. Cell Host Microbe 22(1):38–47

    Article  Google Scholar 

  47. Rowthorn R, Walther S (2017) The optimal treatment of an infectious disease with two strains. J Math Biol 74(7):1753–1791

    MathSciNet  MATH  Article  Google Scholar 

  48. Sahani SK, Gakkhar S (2016) A mathematical model for phage therapy with impulsive phage dose. Differ Equ Dyn Syst. https://doi.org/10.1007/s12591-016-0303-0

    Article  MATH  Google Scholar 

  49. Sarker SA, Sultana S, Reuteler G, Moine D, Descombes P, Charton F, Bourdin G, McCallin S, Ngom-Bru C, Neville T et al (2016) Oral phage therapy of acute bacterial diarrhea with two coliphage preparations: a randomized trial in children from bangladesh. E-Biomedicine 4:124–137

    Google Scholar 

  50. Schooley RT, Biswas B, Gill JJ, Hernandez-Morales A, Lancaster J, Lessor L, Barr JJ, Reed SL, Rohwer F, Benler S et al (2017) Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant acinetobacter baumannii infection. Antimicrob Agents Chemother 61(10):e00954–17

    Article  Google Scholar 

  51. Smith HL (2008) Models of virulent phage growth with application to phage therapy. SIAM J Appl Math 68(6):1717–1737

    MathSciNet  MATH  Article  Google Scholar 

  52. Stoer J, Bulirsch R (2013) Introduction to numerical analysis, vol 12. Springer, New York

    Google Scholar 

  53. Tanji Y, Shimada T, Yoichi M, Miyanaga K, Hori K, Unno H (2004) Toward rational control of escherichia coli o157: H7 by a phage cocktail. Appl Microbiol Biotechnol 64(2):270–274

    Article  Google Scholar 

  54. Thibodeaux JJ, Schlittenhardt TP (2011) Optimal treatment strategies for malaria infection. Bull Math Biol 73(11):2791–2808

    MathSciNet  MATH  Article  Google Scholar 

  55. Wang W (2017) Dynamics of bacteria-phage interactions with immune response in a chemostat. J Biol Syst 25(04):697–713

    MathSciNet  MATH  Article  Google Scholar 

  56. Wardi Y, Egerstedt M, Qureshi MU (2016) Hamiltonian-based algorithm for relaxed optimal control. In: 2016 IEEE 55th conference on decision and control (CDC), IEEE, pp 7222–7227

  57. Young R, Gill JJ (2015) Phage therapy redux—what is to be done? Science 350(6265):1163–1164

    Article  Google Scholar 

  58. Zhang J, Kraft BL, Pan Y, Wall SK, Saez AC, Ebner PD (2010) Development of an anti-salmonella phage cocktail with increased host range. Foodborne Pathogens Dis 7(11):1415–1419

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by a grant from the Army Research Office W911NF-14-1-0402 (to JSW) and a grant from the National Institutes of Health 1R01AI146592-01 (to JSW and LD).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Joshua S. Weitz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Implementation of Projection Operator \(\mathcal {P}_{U}\)

Here, we present a closed form of projection operator \(\mathcal {P}_{U}\) via a geometric approach (Boyd and Vandenberghe 2004), recall that \(u^{*} = \mathcal {P}_{U}(\hat{u})\) in Theorem 1, then we have the following:

$$\begin{aligned} u^{*}&= \hat{u},\ \text {if}\ \hat{u} \in \{ u\ |\ e_{1}^\mathrm{T}u \ge 0,\ e_{2}^\mathrm{T}u \ge 0,\ \mathbb {1}^\mathrm{T}u - 1 \le 0\},\\ u^{*}&= \mathcal {P}_{\mathcal {A}}(\hat{u}),\ \text {if}\ \hat{u} \in \{ u\ |\ \mathbb {1}^\mathrm{T}u - 1\ge 0,\ \widetilde{\mathbb {1}}^\mathrm{T}u + 1 \ge 0,\ \widetilde{\mathbb {1}}^\mathrm{T}u - 1 \le 0 \},\\ u^{*}&= [0,1]^\mathrm{T},\ \text {if}\ \hat{u} \in \{ u\ |\ e_{2}^\mathrm{T}u - 1 \ge 0,\ \widetilde{\mathbb {1}}^\mathrm{T}u - 1 \ge 0 \},\\ u^{*}&= [0,\hat{u}_{2}]^\mathrm{T},\ \text {if}\ \hat{u} \in \{ u\ |\ e_{1}^\mathrm{T}u \le 0,\ e_{2}^\mathrm{T}u \ge 0,\ e_{2}^\mathrm{T}u - 1 \le 0 \},\\ u^{*}&= [0,0]^\mathrm{T},\ \text {if}\ \hat{u} \in \{ u\ |\ e_{1}^\mathrm{T}u \le 0,\ e_{2}^\mathrm{T}u \le 0 \},\\ u^{*}&= [\hat{u}_{1},0]^\mathrm{T},\ \text {if}\ \hat{u} \in \{ u\ |\ e_{1}^\mathrm{T}u \ge 0,\ e_{1}^\mathrm{T}u - 1 \le 0,\ e_{2}^\mathrm{T}u \le 0 \},\\ u^{*}&= [1,0]^\mathrm{T},\ \text {if}\ \hat{u} \in \{ u\ |\ \widetilde{\mathbb {1}}^\mathrm{T}u + 1 \le 0,\ e_{1}^\mathrm{T}u \ge 1 \}, \end{aligned}$$

where \(\widetilde{\mathbb {1}} = [-1,1]^\mathrm{T}\) and \(\mathcal {A} = \{u\ |\ \mathbb {1}^\mathrm{T}u - 1 = 0\}\). Computing the projection of \(\hat{u}\) onto \(\mathcal {A}\) is straightforward. The orthogonality principle yields \(\hat{u} - \mathcal {P}_{\mathcal {A}}(\hat{u})\) which must be colinear with \(\mathbb {1}\), also \(\mathcal {P}_{\mathcal {A}}(\hat{u}) \in \mathcal {A}\), i.e., \(\hat{u} - \mathcal {P}_{\mathcal {A}}(\hat{u}) = z \mathbb {1}\) and \(\mathbb {1}^\mathrm{T}\mathcal {P}_{\mathcal {A}}(\hat{u}) - 1 = 0\). This yields \(z = (\mathbb {1}^\mathrm{T}\hat{u} - 1)/(\mathbb {1}^\mathrm{T}\mathbb {1})\) and thus \(\mathcal {P}_{\mathcal {A}}(\hat{u}) = \hat{u} - z \mathbb {1}\).

Appendix B: The Optimality System of Optimal Control in Monophage Therapy

Here, we derive the necessary conditions for the optimal control problem (28) via Pontryagin’s maximum principle (PMP) (Pontryagin 2018).

Theorem 2

If \(u_{1}^{*}\) is an optimal control that solves problem (28), and \(x^{*}(t)\) is the corresponding state trajectory of the initial value problem (24)–(27), and \(\lambda ^{*}(t)\) is the costate trajectory of the following terminal value problem:

$$\begin{aligned} \dot{\lambda }^{*}&= -\left( \frac{\partial f}{\partial x}(x^{*})\right) ^\mathrm{T}\lambda ^{*} - \left( \frac{\partial \mathcal {L}}{\partial x}(x^{*}, u^{*})\right) ^\mathrm{T},\quad \lambda ^{*}(t_{f}) = [\theta _{f}, \theta _{f}, 0, 0]^\mathrm{T} \end{aligned}$$
(29)

where \(\frac{\partial f}{\partial x}\) is the Jacobian of state Eqs.(24)–(27) and \(\frac{\partial \mathcal {L}}{\partial x} = [\theta _{B}, \theta _{B}, 0, 0]\), then

$$\begin{aligned} u^{*}_{1}(t) = \left\{ \begin{matrix} 0, &{}\quad \text {if}\quad \lambda _{3}^{*}(t) \ge 0\\ -\frac{q \lambda _{3}^{*}(t)}{\theta _{u}},&{} \quad \ \text {if}\quad -\frac{\theta _{u}}{q}\le \lambda _{3}^{*}(t)< 0\\ 1,\ &{} \quad \text {if}\quad \lambda _{3}^{*}(t) < -\frac{\theta _{u}}{q}. \end{matrix}\right. \end{aligned}$$
(30)

Proof

According to PMP, if \(u_{1}^{*}\) is an optimal control that solves problem (28), and if \(x^{*}(t)\) and \(\lambda ^{*}(t)\) are the corresponding state trajectory and costate trajectory, then the following equations are satisfied:

$$\begin{aligned}&\text {State equation}:\ \dot{x}^{*} = f(x^{*}, u_{1}^{*}) \end{aligned}$$
(31)
$$\begin{aligned}&\text {Costate equation}:\ \dot{\lambda }^{*} = -\left( \frac{\partial f}{\partial x}(x^{*})\right) ^\mathrm{T}\lambda ^{*} - \left( \frac{\partial \mathcal {L}}{\partial x}(x^{*}, u_{1}^{*})\right) ^\mathrm{T} \end{aligned}$$
(32)
$$\begin{aligned}&\text {Maximum principle}: \forall t\in [0,t_{f}],\ \mathcal {H}(x^{*}(t), \lambda ^{*}(t), u_{1}^{*}(t))\nonumber \\&\quad = \text {min}\ \{\mathcal {H}(x^{*}(t),\lambda ^{*}(t), u_{1})~|~u_{1}\in U_{1} \} \end{aligned}$$
(33)
$$\begin{aligned}&\text {Terminal condition}:\ \lambda ^{*}(t_{f}) =\left( \frac{\partial g(x^{*}(t_{f}))}{\partial x}\right) ^\mathrm{T}, \end{aligned}$$
(34)

where \(\mathcal {H}\) is the Hamiltonian with the form of \(\mathcal {H}(x, \lambda , u_{1}) = \lambda ^\mathrm{T} f(x,u_{1}) + \mathcal {L}(x,u_{1})\). We find that \(\mathcal {H}(x, \lambda , u_{1}) = \widetilde{Q}\ +\ q\lambda _{3}u_{1} + (\theta _{u}/2) u_{1}^{2}\), where \(\widetilde{Q}\) is the collection of terms that has no argument in \(u_{1}\). Minimizing \(\mathcal {H}(x, \lambda , u_{1})\) over \(u_{1} \in U_{1}\) yields Eq. (30). The costate equation with terminal condition is

$$\begin{aligned} \dot{\lambda }^{*} = -\left( \frac{\partial f}{\partial x}(x^{*})\right) ^\mathrm{T}\lambda ^{*} - \left( \frac{\partial \mathcal {L}}{\partial x}(x^{*}, u_{1}^{*})\right) ^\mathrm{T},\ \lambda ^{*}(t_{f}) =\left( \frac{\partial g(x^{*}(t_{f}))}{\partial x}\right) ^\mathrm{T}, \end{aligned}$$

where \(\partial \mathcal {L}/\partial x = [\theta _{B}, \theta _{B}, 0, 0]\), \(\lambda ^{*}(t_{f}) = [\theta _{f}, \theta _{f}, 0, 0]^\mathrm{T}\). The Jacobian is

$$\begin{aligned} \frac{\partial f}{\partial x} = \begin{bmatrix} J_{11}&{}\quad J_{12} &{}\quad J_{13} &{}\quad J_{14}\\ J_{21}&{}\quad J_{22} &{}\quad 0 &{}\quad J_{24}\\ J_{31}&{}\quad 0 &{}\quad J_{33} &{}\quad 0\\ J_{41}\quad &{} J_{42} &{}\quad 0 &{}\quad J_{44} \end{bmatrix}, \end{aligned}$$

where

$$\begin{aligned} J_{11}&= \frac{r(1 - \mu )(k_{CD} - 2x_{1}-x_{2})}{k_{CD}} - k_{PD}\mathcal {I}(x_{3}) - \frac{\widetilde{\epsilon }(1 + x_{2})x_{4}}{(1 + x_{1} + x_{2})^{2}}\ ,\\ J_{12}&= \frac{\widetilde{\epsilon }x_{1}x_{4}}{(1 + x_{1} + x_{2})^{2}} - \frac{r(1 - \mu )x_{1}}{k_{CD}} \\ J_{13}&= - k_{PD}\frac{\psi x_{1}}{(1 + x_{3})^{2}}\ ,\ J_{14} = - \frac{\widetilde{\epsilon }x_{1}}{1 + x_{1} +x_{2}} \\ J_{21}&= \frac{\mu r (k_{CD} - 2x_{1} - x_{2})}{k_{CD}} - \frac{r'x_{2}}{k_{CD}} + \frac{\widetilde{\epsilon }x_{2}x_{4}}{(1 + x_{1} + x_{2})^{2}}\ ,\\ J_{22}&= \frac{r'(k_{CD} - x_{1} - 2x_{2})}{k_{CD}} - \frac{\mu r x_{1}}{k_{CD}} - \frac{\widetilde{\epsilon }(1 + x_{1})x_{4}}{(1 + x_{1} + x_{2})^{2}}\\ J_{24}&= - \frac{\widetilde{\epsilon }x_{2}}{1 + x_{1} +x_{2}}\ ,\ J_{25} = - k_{PD}\frac{\psi x_{2}}{(1 + x_{5})^{2}} \\ J_{31}&= \beta \mathcal {I}(x_{3}) - \psi x_{3}\ ,\ J_{33} = \frac{\beta \psi x_{1}}{(1 + x_{3})^{2}} - \omega - \psi x_{1}\\ J_{41}&= \frac{\alpha k_{ND}x_{4}(1 - x_{4})}{(k_{ND} + x_{1} + x_{2})^{2}}\ ,\ J_{42} = \frac{\alpha k_{ND}x_{4}(1 - x_{4})}{(k_{ND} + x_{1} + x_{2})^{2}}\ ,\\ J_{44}&= \alpha (\frac{x_{1} + x_{2}}{x_{1} + x_{2} + k_{ND}})(1 - 2x_{4}). \end{aligned}$$

We have explained Eqs. (31)–(34). \(\square \)

Fig. 7
figure7

(Colour figure online) Comparison of time series of population densities with different treatments in the high level of baseline immune response, \(I_{0} = 8.5 \times 10^{6}\) cell/g. a Optimal injection rate, \(\rho _{S}(t)\), is obtained by solving control problem (28) with tuned regulator weight \(\theta _{u} = 10^{11}\) (the largest regulator weight on treatment costs). The Hamiltonian-based algorithm is terminated after k iterations and output control \(u_{1}^{k}\), where \(k = 11\). The numerical value of objective cost in problem (28) with control \(u_{1}^{k}\) is 0.1024, and the convergence indicator \(|\Theta (u_{1}^{k})| \approx 1.68 \times 10^{-8}\). Bacteria are eliminated around 30 h post-infection. b Optimal injection rate, \(\rho _{S}(t)\) and \(\rho _{R}(t)\), is obtained by solving control problem (17) with tuned regulator weight \(\theta _{u} = 10^{11}\). The Hamiltonian-based algorithm is terminated after k iterations and output control \(u^{k}\), where \(k = 10\). The numerical value of objective cost in problem (17) with control \(u^{k}\) is 0.1024, and the convergence indicator \(|\Theta (u^{k})| \approx 9.34 \times 10^{-7}\). Note that the optimal injection rate of phage \(P_{R}\) is nearly zero, i.e., \(\rho _{R}(t) \approx 0\ \forall t \in [t_{0}, t_{f}]\). Thus, the optimal injection rates solved from 2D-OC and 1D-OC are nearly identical, i.e., \(\rho _{S}(t)\) is a single-pulse signal centered at \(t = 2\) h. Bacteria are eliminated around 30 h post-infection. c The practical therapeutic treatment is obtained from optimal injection rate in (b): Single dose, \(P_{S}\) phage dose, is injected at 2 h post-infection with amount of \(5 \times 10^{2}\)PFU. Bacteria are eliminated around 30 h post-infection. See model parameters and simulation details in Sect. 4.2

Appendix C: Effective Single-Dose Treatment in Immunodeficient Hosts (Baseline Immune Response is Sufficiently High)

When the baseline immune response is sufficiently high in immunodeficient hosts, all the treatment strategies (1D-OC, 2D-OC, and practical treatments) can eliminate bacteria with a low dose of phage \(P_{S}\) injected at very beginning of treatment (see Fig. 7 in Appendix 1).

Appendix D: Robustness analysis of optimal timing and dose to variations in therapy duration

From our numerical simulations, e.g., Figs. 3, 5, 6, and 7, we observe that successful phage therapy relies on early injection (for both single-dose and multi-dose cases). Here, we show that early ‘hit-hard’ approaches remain robust to variations in treatment duration when the final treatment time \(t_{f}\) is changed. Please refer to Fig. 8 for the optimal dose and timing of the practical therapy for different final treatment time.

Fig. 8
figure8

(Colour figure online) The optimal timing and dose in practical therapeutic treatment with variation of final time from 2 to 4 days (i.e., \(t_{f} \in [48, 96]\) h). The baseline immune response is fixed at \(I_{0} = 6 \times 10^{6}\) cell/g. (Left) Minimal phage amount for eliminating bacterial cells with variation in final time \(t_{f}\). Optimal dosages of phage \(P_{S}\) (red) and phage \(P_{R}\) (blue) are maintained at approximately \(10^{8}\) (PFU/g) and \(10^{7}\) (PFU/g), respectively. (Right) Optimal timing (defined by the peak of the optimal phage injection profile) of two types of phage injection with variation in final time \(t_{f}\). The timings of injecting two types of phage dose are both about 2 h post-infection (i.e., \(T_{P_{S}} = T_{P_{R}} \approx 2\) h). See model parameters and simulation details in Sect. 4.2

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, G., Leung, C.Y., Wardi, Y. et al. Optimizing the Timing and Composition of Therapeutic Phage Cocktails: A Control-Theoretic Approach. Bull Math Biol 82, 75 (2020). https://doi.org/10.1007/s11538-020-00751-w

Download citation

Keywords

  • Phage therapy
  • Mathematical modeling
  • Optimal control theory