Skip to main content
Log in

A Model for the Acrosome Reaction in Mammalian Sperm

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The acrosome reaction is a complex, calcium-dependent reaction that results in an exocytotic event required for successful fertilization of the egg. It has long been thought that the acrosome reaction occurs upon sperm binding to the zona pellucida, a viscoelastic layer surrounding the oocyte. Recent studies have suggested that the reaction may even occur before the sperm encounters the zona, perhaps mediated by progesterone or some other agonist. It has been particularly difficult to understand differences between progesterone-induced and zona-induced reactions experimentally and whether one substance is the more biologically relevant trigger. Until this present work, there has been little effort to mathematically model the acrosome reaction in sperm as a whole. Instead, attention has been paid to modeling portions of the pathways involved in other cell types. Here we present a base model for the acrosome reaction which characterizes the known biochemical reactions and behaviors of the system. Our model allows us to analyze several pathways that may act as a stabilizing mechanism for avoiding sustained oscillatory calcium responses often observed in other cell types. Such an oscillatory regime might otherwise prevent acrosomal exocytosis and therefore inhibit fertilization. Results indicate that the acrosome reaction may rely upon multiple redundant mechanisms to avoid entering an oscillatory state and instead maintain a high resting level of calcium, known to be required for successful acrosomal exocytosis and, ultimately, fertilization of the oocyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abou-haila A, Tulsiani DR (2009) Signal transduction pathways that regulate sperm capacitation and the acrosome reaction. Arch Biochem Biophys 485(1):72–81

    Article  Google Scholar 

  • Arnoult C, Kazam IG, Visconti PE, Kopf GS, Villaz M, Florman HM (1999) Control of the low voltage-activated calcium channel of mouse sperm by egg ZP3 and by membrane hyperpolarization during capacitation. Proc Natl Acad Sci USA 96(12):6757–6762

    Article  Google Scholar 

  • Arnoult C, Zeng Y, Florman HM (1996) ZP3-dependent activation of sperm cation channels regulates acrosomal secretion during mammalian fertilization. J Cell Biol 134(3):637–645

    Article  Google Scholar 

  • Atri A, Amundson J, Clapham D, Sneyd J (1993) A single-pool model for intracellular calcium oscillations and waves in the xenopus laevis oocyte. Biophys J 65(4):1727–1739

    Article  Google Scholar 

  • Augustine GJ (2001) How does calcium trigger neurotransmitter release? Curr Opin Neurobio 11(3):320–326

    Article  Google Scholar 

  • Bastiaan H, Franken D, Wranz P (1999) G-protein regulation of the solubilized human zona pellucida-mediated acrosome reaction and zona pellucida binding. J Assist Reprod Genet 16(6):332–336

    Article  Google Scholar 

  • Becherer U, Moser T, Stühmer W, Oheim M (2003) Calcium regulates exocytosis at the level of single vesicles. Nat Neurosci 6(8):846–853

    Article  Google Scholar 

  • Berridge MJ (1987) Inositol trisphosphate and diacylglycerol: two interacting second messengers. Ann Rev Biochem 56(1):159–193

    Article  Google Scholar 

  • Bertram R, Smith GD, Sherman A (1999) Modeling study of the effects of overlapping Ca\(^{2+}\) microdomains on neurotransmitter release. Biophys J 76(2):735–750

    Article  Google Scholar 

  • Bird G, Burgess G, Putney J (1993) Sulfhydryl reagents and cAMP-dependent kinase increase the sensitivity of the inositol 1, 4, 5-trisphosphate receptor in hepatocytes. J Biol Chem 268(24):17917–17923

    Google Scholar 

  • Bleil JD, Wassarman PM (1983) Sperm–egg interactions in the mouse: sequence of events and induction of the acrosome reaction by a zona pellucida glycoprotein. Dev Biol 95(2):317–324

    Article  Google Scholar 

  • Bonaccorsi L, Krausz C, Pecchioli P, Forti G, Baldi E (1998) Progesterone-stimulated intracellular calcium increase in human spermatozoa is protein kinase C-independent. Mol Hum Reprod 4(3):259–268

    Article  Google Scholar 

  • Breitbart H (2002) Intracellular calcium regulation in sperm capacitation and acrosomal reaction. Mol Cell Endocrinol 187(1):139–144

    Article  Google Scholar 

  • Breitbart H, Lax J, Rotem R, Naor Z (1992) Role of protein kinase C in the acrosome reaction of mammalian spermatozoa. Biochem J 281(Pt 2):473

    Article  Google Scholar 

  • Breitbart H, Spungin B (1997) The biochemistry of the acrosome reaction. Mol Hum Reprod 3(3):195–202

    Article  Google Scholar 

  • Broad LM, Braun FJ, Lievremont JP, Bird GSJ, Kurosaki T, Putney JW (2001) Role of the phospholipase c-inositol 1, 4, 5-trisphosphate pathway in calcium release-activated calcium current and capacitative calcium entry. J Biol Chem 276(19):15945–15952

    Article  Google Scholar 

  • Bruce JI, Straub SV, Yule DI (2003) Crosstalk between cAMP and Ca\(^{2+}\) signaling in non-excitable cells. Cell Calcium 34(6):431–444

    Article  Google Scholar 

  • Buffone MG, Rodriguez-Miranda E, Storey BT, Gerton GL (2009) Acrosomal exocytosis of mouse sperm progresses in a consistent direction in response to zona pellucida. J Cell Physiol 220(3):611–620

    Article  Google Scholar 

  • Camello P, Gardner J, Petersen OH, Tepikin A (1996) Calcium dependence of calcium extrusion and calcium uptake in mouse pancreatic acinar cells. J Physiol 490(Pt 3):585–593

    Article  Google Scholar 

  • Cherr GN, Lambert H, Meizel S, Katz DF (1986) In vitro studies of the golden hamster sperm acrosome reaction: completion on the zona pellucida and induction by homologous soluble zonae pellucidae. Dev Biol 114(1):119–131

    Article  Google Scholar 

  • Cockcroft S, Thomas G (1992) Inositol-lipid-specific phospholipase c isoenzymes and their differential regulation by receptors. Biochem J 288(Pt 1):1

    Article  Google Scholar 

  • Cohen R, Buttke DE, Asano A, Mukai C, Nelson JL, Ren D, Miller RJ, Cohen-Kutner M, Atlas D, Travis AJ (2014) Lipid modulation of calcium flux through Ca\(_{V}\)2.3 regulates acrosome exocytosis and fertilization. Dev Cell 28(3):310–321

    Article  Google Scholar 

  • Crozet N, Dumont M (1984) The site of the acrosome reaction during in vivo penetration of the sheep oocyte. Gamete Res 10(2):97–105

    Article  Google Scholar 

  • Cuthbertson K, Chay T (1991) Modelling receptor-controlled intracellular calcium oscillators. Cell Calcium 12(2):97–109

    Article  Google Scholar 

  • De Blas GA, Roggero CM, Tomes CN, Mayorga LS (2005) Dynamics of snare assembly and disassembly during sperm acrosomal exocytosis. PLoS Biol 3(10):e323

    Article  Google Scholar 

  • De Young GW, Keizer J (1992) A single-pool inositol 1, 4, 5-trisphosphate-receptor-based model for agonist-stimulated oscillations in Ca\(^{2+}\) concentration. Proc Natl Acad Sci 89(20):9895–9899

    Article  Google Scholar 

  • Doedel E, Champneys A, Dercole F, Fairgrieve T, Kuznetsov Y, Oldeman B, Paffenroth R, Sandstede B, Wang X, Zhang C (2007) AUTO: software for continuation and bifurcation problems in ordinary differential equations. http://indy.cs.concordia.ca/auto/. Accessed 1 Nov 2014

  • Eliot LS, Dudai Y, Kandel ER, Abrams TW (1989) Ca\(^{2+}\)/calmodulin sensitivity may be common to all forms of neural adenylate cyclase. Proc Natl Acad Sci 86(23):9564–9568

    Article  Google Scholar 

  • Evans JP, Florman HM (2002) The state of the union: the cell biology of fertilization. Nat Med 8(10; SUPP):57–63

    Article  Google Scholar 

  • Florman H (2014) Personal Communication

  • Florman HM (1994) Sequential focal and global elevations of sperm intracellular Ca\(^{2+}\) are initiated by the zona pellucida during acrosomal exocytosis. Dev Biol 165(1):152–164

    Article  Google Scholar 

  • Florman HM, Jungnickel MK, Sutton KA et al (2008) Regulating the acrosome reaction. Int J Dev Biol 52(5–6):503–510

    Article  Google Scholar 

  • Florman HM, Storey BT (1982) Mouse gamete interactions: the zona pellucida is the site of the acrosome reaction leading to fertilization in vitro. Dev Biol 91(1):121–130

    Article  Google Scholar 

  • Florman HM, Tombes RM, First NL, Babcock DF (1989) An adhesion-associated agonist from the zona pellucida activates G protein-promoted elevations of internal Ca\(^{2+}\) and pH that mediate mammalian sperm acrosomal exocytosis. Dev Biol 135(1):133–146

    Article  Google Scholar 

  • Foresta C, Rossato M, Divirgilio F (1995) Differential modulation by protein kinase c of progesterone-activated responses in human sperm. Biochem Biophys Res Commun 206(1):408–413

    Article  Google Scholar 

  • Fukami K, Nakao K, Inoue T, Kataoka Y, Kurokawa M, Fissore RA, Nakamura K, Katsuki M, Mikoshiba K, Yoshida N et al (2001) Requirement of phospholipase c\(\delta \)4 for the zona pellucida-induced acrosome reaction. Science 292(5518):920–923

    Article  Google Scholar 

  • Harootunian A, Kao J, Tsien R (1988) Agonist-induced calcium oscillations in depolarized fibroblasts and their manipulation by photoreleased ins (l, 4, 5) p3, and ca++, and ca++ buffer. In: Brown D, Barker P, Battey P (eds) Cold spring harbor symposia on quantitative biology, vol 53. Cold Spring Harbor Laboratory Press, New York, pp 935–943

    Google Scholar 

  • Harper CV, Barratt CL, Publicover SJ, Kirkman-Brown JC (2006) Kinetics of the progesterone-induced acrosome reaction and its relation to intracellular calcium responses in individual human spermatozoa. Biol Reprod 75(6):933–939

    Article  Google Scholar 

  • Hino T, Muro Y, Tamura-Nakano M, Okabe M, Tateno H, Yanagimachi R (2016) The behavior and acrosomal status of mouse spermatozoa in vitro, and within the oviduct during fertilization after natural mating 1. Biol Reprod 95(3):50–1

    Article  Google Scholar 

  • Hiradate Y, Inoue H, Kobayashi N, Shirakata Y, Suzuki Y, Gotoh A, Sg Roh, Uchida T, Katoh K, Yoshida M et al (2014) Neurotensin enhances sperm capacitation and acrosome reaction in mice. Biol Reprod 91(2):53. https://doi.org/10.1095/biolreprod.113.112789

    Article  Google Scholar 

  • Ho HC, Suarez SS (2001) An inositol 1, 4, 5-trisphosphate receptor-gated intracellular Ca\(^{2+}\) store is involved in regulating sperm hyperactivated motility. Biol Reprod 65(5):1606–1615

    Article  Google Scholar 

  • Ho HC, Suarez SS (2003) Characterization of the intracellular calcium store at the base of the sperm flagellum that regulates hyperactivated motility. Biol Reprod 68(5):1590–1596

    Article  Google Scholar 

  • Höfer T, Venance L, Giaume C (2002) Control and plasticity of intercellular calcium waves in astrocytes: a modeling approach. J Neurosci 22(12):4850–4859

    Article  Google Scholar 

  • Hong D, Jaron D, Buerk DG, Barbee KA (2008) Transport-dependent calcium signaling in spatially segregated cellular caveolar domains. Am J Physio Cell Physiol 294(3):C856–C866

    Article  Google Scholar 

  • Horowitz LF, Hirdes W, Suh BC, Hilgemann DW, Mackie K, Hille B (2005) Phospholipase c in living cells activation, inhibition, Ca\(^{2+}\) requirement, and regulation of M current. J Gen Physiol 126(3):243–262

    Article  Google Scholar 

  • Iida T, Stojilković SS, Izumi Si, Catt KJ (1991) Spontaneous and agonist-induced calcium oscillations in pituitary gonadotrophs. Mol Endocrinol 5(7):949–958

    Article  Google Scholar 

  • Inoue N, Satouh Y, Ikawa M, Okabe M, Yanagimachi R (2011) Acrosome-reacted mouse spermatozoa recovered from the perivitelline space can fertilize other eggs. Proc Natl Acad Sci 108(50):20008–20011

    Article  Google Scholar 

  • Jin M, Fujiwara E, Kakiuchi Y, Okabe M, Satouh Y, Baba SA, Chiba K, Hirohashi N (2011) Most fertilizing mouse spermatozoa begin their acrosome reaction before contact with the zona pellucida during in vitro fertilization. Proc Natl Acad Sci 108(12):4892–4896

    Article  Google Scholar 

  • Keener J, Sneyd J (2009) Mathematical physiology. Vol. I: cellular physiology, interdisciplinary applied mathematics, vol 8, 2nd edn. Springer, New York. https://doi.org/10.1007/978-0-387-79388-7

    Book  MATH  Google Scholar 

  • Keizer J, De Young GW (1992) Two roles of Ca\(^{2+}\) in agonist stimulated Ca\(^{2+}\) oscillations. Biophys J 61(3):649–660

    Article  Google Scholar 

  • Kirkman-Brown JC, Barratt CL, Publicover SJ (2004) Slow calcium oscillations in human spermatozoa. Biochem J 378(Pt 3):827–832

    Article  Google Scholar 

  • Kirkman-Brown JC, Bray C, Stewart PM, Barratt CL, Publicover SJ (2000) Biphasic elevation of [Ca(2+)](i) in individual human spermatozoa exposed to progesterone. Dev Biol 222(2):326–335

    Article  Google Scholar 

  • Kishimoto A, Takai Y, Mori T, Kikkawa U, Nishizuka Y (1980) Activation of calcium and phospholipid-dependent protein kinase by diacylglycerol, its possible relation to phosphatidylinositol turnover. J Biol Chem 255(6):2273–2276

    Google Scholar 

  • La Spina FA, Molina LCP, Romarowski A, Vitale AM, Falzone TL, Krapf D, Hirohashi N, Buffone MG (2016) Mouse sperm begin to undergo acrosomal exocytosis in the upper isthmus of the oviduct. Dev Biol 411(2):172–182

    Article  Google Scholar 

  • Lawrie A, Toescu E, Gallacher D (1993) Two different spatiotemporal patterns for Ca\(^{2+}\) oscillations in pancreatic acinar cells: evidence of a role for protein kinase C in ins (1, 4, 5) p 3-mediated Ca\(^{2+}\) signalling. Cell Calcium 14(10):698–710

    Article  Google Scholar 

  • Li YX, Rinzel J, Keizer J, Stojilković SS (1994) Calcium oscillations in pituitary gonadotrophs: comparison of experiment and theory. Proc Natl Acad Sci 91(1):58–62

    Article  Google Scholar 

  • Li YX, Rinzel J, Vergara L, Stojilković S (1995) Spontaneous electrical and calcium oscillations in unstimulated pituitary gonadotrophs. Biophys J 69(3):785–795

    Article  Google Scholar 

  • Meyer T, Stryer L (1988) Molecular model for receptor-stimulated calcium spiking. Proc Natl Acad Sci 85(14):5051–5055

    Article  Google Scholar 

  • Nakade S, Rhee S, Hamanaka H, Mikoshiba K (1994) Cyclic AMP-dependent phosphorylation of an immunoaffinity-purified homotetrameric inositol 1, 4, 5-trisphosphate receptor (type i) increases Ca\(^{2+}\) flux in reconstituted lipid vesicles. J Biol Chem 269(9):6735–6742

    Google Scholar 

  • Neher E, Sakaba T (2008) Multiple roles of calcium ions in the regulation of neurotransmitter release. Neuron 59(6):861–872

    Article  Google Scholar 

  • O’Toole CM, Arnoult C, Darszon A, Steinhardt RA, Florman HM (2000) Ca(2+) entry through store-operated channels in mouse sperm is initiated by egg ZP3 and drives the acrosome reaction. Mol Biol Cell 11(5):1571–1584

    Article  Google Scholar 

  • Parys J, Sernett S, DeLisle S, Snyder P, Welsh M, Campbell K (1992) Isolation, characterization, and localization of the inositol 1, 4, 5-trisphosphate receptor protein in xenopus laevis oocytes. J Biol Chem 267(26):18776–18782

    Google Scholar 

  • Patrat C, Serres C, Jouannet P (2000) The acrosome reaction in human spermatozoa. Biol Cell 92(3–4):255–266

    Article  Google Scholar 

  • Premack BA, Gardner P (1992) Signal transduction by T-cell receptors: mobilization of Ca and regulation of Ca-dependent effector molecules. Am J Physiol Cell Physiol 263(6):C1119–C1140

    Article  Google Scholar 

  • Rhee S, Choi K, Pan G, Sadowski P, Wynn R, Davie J, Cox R, Chuang D, Haitoglou C, Tsilibary E (1992) Regulation of inositol phospholipid-specific phospholipase C isozymes. J Biol Chem 267(18):12393–13296

    Google Scholar 

  • Roderick HL, Berridge MJ, Bootman MD (2003) Calcium-induced calcium release. Curr Biol 13(11):R425

    Article  Google Scholar 

  • Rossato M, Di Virgilio F, Rizzuto R, Galeazzi C, Foresta C (2001) Intracellular calcium store depletion and acrosome reaction in human spermatozoa: role of calcium and plasma membrane potential. Mol Hum Reprod 7(2):119–128

    Article  Google Scholar 

  • Rubin R (1970) The role of calcium in the release of neurotransmitter substances and hormones. Pharmacol Rev 22(3):389–428

    Google Scholar 

  • Sánchez-Cárdenas C, Servín-Vences MR, José O, Treviño CL, Hernández-Cruz A, Darszon A (2014) Acrosome reaction and Ca\(^{2+}\) imaging in single human spermatozoa: new regulatory roles of [ca\(^{2+}\)]\(_i\). Biol Reprod 91(3):67. https://doi.org/10.1095/biolreprod.114.119768

    Article  Google Scholar 

  • Sneyd J, Tsaneva-Atanasova K, Reznikov V, Bai Y, Sanderson M, Yule D (2006) A method for determining the dependence of calcium oscillations on inositol trisphosphate oscillations. Proc Natl Acad Sci USA 103(6):1675–1680

    Article  Google Scholar 

  • Sneyd J, Wetton B, Charles AC, Sanderson MJ (1995) Intercellular calcium waves mediated by diffusion of inositol trisphosphate: a two-dimensional model. Am J Physiol Cell Physiol 268(6):C1537–C1545

    Article  Google Scholar 

  • Spungin B, Breitbart H (1996) Calcium mobilization and influx during sperm exocytosis. J Cell Sci 109(7):1947–1955

    Google Scholar 

  • Tertyshnikova S, Fein A (1998) Inhibition of inositol 1, 4, 5-trisphosphate-induced Ca\(^{2+}\) release by cAMP-dependent protein kinase in a living cell. Proc Natl Acad Sci 95(4):1613–1617

    Article  Google Scholar 

  • Tesarik J, Carreras A, Mendoza C (1996) Single cell analysis of tyrosine kinase dependent and independent Ca\(^{2+}\) fluxes in progesterone induced acrosome reaction. Mol Hum Reprod 2(4):225–232

    Article  Google Scholar 

  • Thomas P, Meizel S (1989) Phosphatidylinositol 4, 5-bisphosphate hydrolysis in human sperm stimulated with follicular fluid or progesterone is dependent upon Ca\(^{2+}\) influx. Biochem J 264:539–546

    Article  Google Scholar 

  • Thore S, Dyachok O, Gylfe E, Tengholm A (2005) Feedback activation of phospholipase C via intracellular mobilization and store-operated influx of Ca\(^{2+}\) in insulin-secreting \(\beta \)-cells. J Cell Sci 118(19):4463–4471

    Article  Google Scholar 

  • Tollner TL, Yudin AI, Cherr GN, Overstreet JW (2003) Real-time observations of individual macaque sperm undergoing tight binding and the acrosome reaction on the zona pellucida. Biol Reprod 68(2):664–672

    Article  Google Scholar 

  • Uto N, Yoshimatsu N, Lopata A, Yanagimachi R (1988) Zona-induced acrosome reaction of hamster spermatozoa. J Exp Zool Part A Ecol Genet Physiol 248(1):113–120

    Article  Google Scholar 

  • Walensky LD, Snyder SH (1995) Inositol 1, 4, 5-trisphosphate receptors selectively localized to the acrosomes of mammalian sperm. J Cell Biol 130(4):857–869

    Article  Google Scholar 

  • Wennemuth G, Babcock DF, Hille B (2003) Calcium clearance mechanisms of mouse sperm. J Gen Physiol 122(1):115–128

    Article  Google Scholar 

  • Xia J, Reigada D, Mitchell CH, Ren D (2007) CATSPER channel-mediated Ca\(^{2+}\) entry into mouse sperm triggers a tail-to-head propagation. Biol Reprod 77(3):551–559

    Article  Google Scholar 

  • Yanagimachi R (1994) Mammalian fertilization. In: Knobil E, Neill J (eds) Physiol Reprod. Raven Press, New York

    Google Scholar 

  • Yanagimachi R, Phillips DM (1984) The status of acrosomal caps of hamster spermatozoa immediately before fertilization in vivo. Gamete Res 9(1):1–19

    Article  Google Scholar 

  • Yue C, Ku CY, Liu M, Simon MI, Sanborn BM (2000) Molecular mechanism of the inhibition of phospholipase C \(\beta \)3 by protein kinase C. J Biol Chem 275(39):30220–30225

    Article  Google Scholar 

Download references

Acknowledgements

The work of JS and LF was supported, in part, by the National Science Foundation Grant DMS-1043626. The authors would like to thank Ricardo Cortez for many useful discussions and James Sneyd for his suggestions and insight.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie Simons.

Additional information

This project was supported, in part, by the National Science Foundation Grant DMS-104626.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simons, J., Fauci, L. A Model for the Acrosome Reaction in Mammalian Sperm. Bull Math Biol 80, 2481–2501 (2018). https://doi.org/10.1007/s11538-018-0478-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-018-0478-3

Keywords

Mathematics Subject Classification

Navigation