Skip to main content

Advertisement

Log in

HPV Screening and Vaccination Strategies in an Unscreened Population: A Mathematical Modeling Study

  • Special Issue: Mathematical Epidemiology
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Human papillomavirus (HPV), a sexually transmitted infection, is the necessary cause of cervical cancer, the third most common cancer affecting women worldwide. Prevention and control strategies include vaccination, screening, and treatment. While HPV prevention and control efforts are important worldwide, they are especially important in low-income areas with a high infection rate or high rate of cervical cancer. This study uses mathematical modeling to explore various vaccination and treatment strategies to control for HPV and cervical cancer while using Nepal as a case study. Two sets of deterministic models were created with the goal of understanding the impact of various prevention and control strategies. The first set of models examines the relative importance of screening and vaccination in an unscreened population, while the second set examines various screening scenarios. Partial rank correlation coefficients confirm the importance of screening and treatment in the reduction of HPV infections and cancer cases even when vaccination uptake is high. Results also indicate that less expensive screening technologies can achieve the same overall goal as more expensive screening technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted from Atkinson et al. (2012)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alsaleh AA, Gumel AB (2014) Dynamics analysis of a vaccination model for HPV transmission. J Biol Syst 22(04):555–599

    MathSciNet  MATH  Google Scholar 

  • Atkinson W, Wolfe S, Hamborsky J (2012) Epidemiology and prevention of vaccine-preventable diseases. The pink book: course textbook-12th edition. Education, Information and Partnership Branch, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention

  • Blower SM, Dowlatabadi H (1994) Sensitivity and uncertainty analysis of complex models of disease transmission: an HIV model, as an example. Int Stat Rev 62:229–243

    MATH  Google Scholar 

  • Bosch F, Tsu V, Vorsters A, Damme PV, Kane M (2012) Reframing cervical cancer prevention. Expanding the field towards prevention of human papillomavirus infections and related diseases. Vaccine 30(S5):F1–F11

    Google Scholar 

  • Brisson M, Laprise JF, Chesson HW, Drolet M, Malagón T, Boily MC, Markowitz LE (2016) Health and economic impact of switching from a 4-valent to a 9-valent HPV vaccination program in the United States. J Natl Cancer Inst 108(1):djv282

    Google Scholar 

  • Brotherton JM, Jit M, Gravitt PE, Brisson M, Kreimer AR, Pai SI, Fakhry C, Monsonego J, Franceschi S (2016) Eurogin roadmap 2015: How has HPV knowledge changed our practice: vaccines. Int J Cancer 139(3):510–517

    Google Scholar 

  • Bruni L, Barrionuevo-Rosas L, Albero G, Aldea M, Serrano B, Valencia S, Brotons M, Mena M, Cosano R, Muñoz J, Bosch F, de Sanjosé S, Castellsagué X (2015) Human papillomavirus and related diseases in Nepal. Summary report, ICO Information Centre on HPV and Cancer (HPV Information Centre)

  • Castellsagué X (2008) Natural history and epidemiology of HPV infection and cervical cancer. Gynecol Oncol 110(3):S4–S7

    Google Scholar 

  • Centers for Disease Control and Prevention (2015) HPV vaccine information for clinicians-fact sheet. http://www.cdc.gov/std/hpv/stdfact-hpv-vaccine-hcp.htm. Accessed 1 June 2015

  • Crawford B, Kribs-Zaleta C (2009) The impact of vaccination and co-infection on HPV and cervical cancer. Discrete Contin Dyn Syst Ser B 12(2):279–304

    MathSciNet  MATH  Google Scholar 

  • Dawar M, Deeks S, Dobson S (2007) Human papillomavirus vaccines launch a new era in cervical cancer prevention. Can Med Assoc J 177(5):456–461

    Google Scholar 

  • de Velde NV, Brisson M, Bolly MC (2007) Modeling human papillomavirus vaccine effectiveness: quantifying the impact of parameter uncertainty. Am J Epidemiol 165(7):762–775

    Google Scholar 

  • Diekmann O, Heesterbeek J, Roberts M (2009) The construction of next-generation matrices for compartmental epidemic models. J R Soc Interface 7:873–885

    Google Scholar 

  • Dinshaw K, Edmunds J, Frazer I, Garcia P, Kahn J, Markowitz L, Muoz N, Ndumbe P, Pitisuttithum P, Beutels P, Chirenje M, Kahn J, Swati LB, You-Lin Q (2008) Human papillomavirus (HPV) vaccine background paper. http://www.who.int/immunization/documents. Accessed 1 June 2015

  • Dockter J, Schroder A, Hill C, Guzenski L, Monsonego J, Giachetti C (2009) Clinical performance of the APTIMA® HPV assay for the detection of high-risk HPV and high-grade cervical lesions. J Clin Virol 45(S1):S55–S61

    Google Scholar 

  • Drolet M, Laprise JF, Boily MC, Franco E, Brisson M (2014) Potential cost-effectiveness of the nonavalent human papillomavirus (HPV) vaccine. Int J Cancer 134(9):2264–2268

    Google Scholar 

  • Einstein M, Baron M, Levin M, Chatterjee A, Edwards R, Zepp F, Carletti I, Dessy F, Trofa A, Schuind A, Dubin G (2009) Comparison of the immunogenicity and safety of Cervarix\(^{\rm TM}\) and Gardasil\(^{{\textregistered }}\) human papillomavirus (HPV) cervical cancer vaccines in healthy women aged 18–45 years. Hum Vaccines 5(10):705–719

    Google Scholar 

  • Elbasha E, Dasbach E, Insinga R (2007) Model for assessing human papillomavirus vaccination strategies. Emerg Infect Dis 13(1):28–41

    Google Scholar 

  • Garnett G, Kim J, French K, Goldie S (2006) Chapter 21: modelling the impact of HPV vaccines on cervical cancer and screening programmes. Vaccine 24S3:178–186

    Google Scholar 

  • Ghosh S, Seth S, Paul J, Rahman R, Chattopadhyay S, Bhadra D (2014) Evaluation of Pap smear, high risk HPV DNA testing in detection of cervical neoplasia with colposcopy guided or conventional biopsy as gold standard. Int J Healthc Biomed Res 2(2):192–197

    Google Scholar 

  • Goldie SJ, Grima D, Kohli M, Wright TC, Weinstein M, Franco E (2003) A comprehensive natural history model of HPV infection and cervical cancer to estimate the clinical impact of a prophylactic HPV-16/18 vaccine. Int J Cancer 106(6):896–904

    Google Scholar 

  • Goldie S, Gaffikin L, Goldhaber-Fiebert J, Gordillo-Tobar A, Levin C, Mahé C, Wright T (2005) Cost-effectiveness of cervical-cancer screening in five developing countries. N Engl J Med 353(20):2158–2168

    Google Scholar 

  • Government of Nepal (2014) National population and housing census 2011

  • Government of Nepal (2014) Central Bureau of statistics: statistical pocket book of Nepal

  • Gravitt P, Paul P, Katki H, Vendantham H, Ramakrishna G, Sudula M, Kalpana B, Ronnett B, Vijayaraghavan K, Shah K (2010) Effectiveness of VIA, PAP, and HPV DNA testing in a cervical cancer screening program in a peri-urban community in Andhra Pradesh, India. PloS ONE 5(10):e13,711

    Google Scholar 

  • Heffernan J, Smith R, Wahl L (2005) Perspectives on the basic reproductive ratio. J R Soc Interface 2(4):281–293

    Google Scholar 

  • ICO HPV Information Centre (2017) Human papillomavirus and related cancers, fact sheet. http://www.hpvcentre.net/statistics/reports/NPLFS.pdf. Accessed 14 July 2017

  • Insinga RP, Dasbach EJ, Elbasha Elamin H, Liaw Kai-Li adn Barr E (2007) Progression and regression of incident cervical HPV 6, 11, 16 and 18 infections in young women. Infect Agents Cancer 2(1):15–25

    Google Scholar 

  • Jit M, Gay N, Soldan K, Hong Choi Y, Edmunds WJ (2010) Estimating progression rates for human papillomavirus infection from epidemiological data. Med Decis Mak 30(1):84–98

    Google Scholar 

  • Johnson H, Elfström K, Edmunds W (2012) Inference of type-specific HPV transmissibility, progression and clearance rates: a mathematical modelling approach. PLoS ONE 7(11):e49,614

    Google Scholar 

  • Kash N, Lee M, Kollipara R, Downing C, Guidry J, Tyring S (2015) Safety and efficacy data on vaccines and immunization to human papillomavirus. J Clin Med 4(4):614–633

    Google Scholar 

  • Kim JJ, Salomon JA, Weinstein MC, Goldie SJ (2006) Packaging health services when resources are limited: the example of a cervical cancer screening visit. PLoS Med 3(11):e434

    Google Scholar 

  • Labani S, Asthana S, Sodhani P, Gupta S, Bhambhani S, Pooja B, Lim J, Jeronimo J (2014) CareHPV cervical cancer screening demonstration in a rural population of north India. Eur J Obstet Gynecol Reprod Biol 176:75–79

    Google Scholar 

  • Lee S, Tameru A (2012) A mathematical model of human papillomavirus (HPV) in the United States and its impact on cervical cancer. J Cancer 3:262–268

    Google Scholar 

  • Mandelblatt J, Lawrence W, Womack S, Jacobson D, Yi B, Hwang Y, Gold K, Barter J, Shah K (2002) Benefits and costs of using HPV testing to screen for cervical cancer. J Am Med Assoc 287(18):2372–2381

    Google Scholar 

  • Obeng-Denteh W, Afrifa R, Barnes B, Addo K (2014) Modeling the epidemiology of human papilloma virus infection and vaccination and its impact on cervical cancer in Ghana. J Sci Res Rep 3(19):2501–2518

    Google Scholar 

  • Olsen J (2010) Human papillomavirus transmission and cost-effectiveness of introducing quadrivalent HPV vaccination in denmark. Int J Technol Assess Health Care 26(2):183–191

    Google Scholar 

  • Qiagen (2013–2015). https://www.qiagen.com/us/products/catalog/. Accessed 22 June 2015

  • Qiao YL, Sellors J, Eder P, Bao YP, Lim J, Zhao FH, Weigl B, Zhang WH, Peck R, Li L, Chen F, Pan QJ, Lorincz A (2008) A new HPV-DNA test for cervical-cancer screening in developing regions: a cross-sectional study of clinical accuracy in rural China. Lancet Oncol 9(10):929–936

    Google Scholar 

  • Sanchez M, Blower S (1997) Uncertainty and sensitivity analysis of the basic reproductive rate tuberculosis as an example. Am J Epidemiol 145(12):1127–1137

    Google Scholar 

  • Shaban N, Mofi H (2014) Modelling the impact of vaccination and screening on the dynamics of human papillomavirus infection. Int J Math Anal 8(9):441–454

    MathSciNet  Google Scholar 

  • Shakya S, Syversen U, Åsvold BO, Bofin AM, Aune G, Nordbø SA, Vaidya KM, Karmacharya BM, Afset JE, Tingulstad S (2017) Prevalence of human papillomavirus infection among women in rural Nepal. Acta Obstet Gynecol Scand 96(1):29–38

    Google Scholar 

  • Sherpa ATL, Clifford GM, Vaccarella S, Shrestha S, Nygård M, Karki BS, Snijders PJ, Meijer CJ, Franceschi S (2010) Human papillomavirus infection in women with and without cervical cancer in Nepal. Cancer Causes Control 21(3):323–330

    Google Scholar 

  • Stoler M, Wright T, Sharma A, Apple R, Gutekunst K, Wright T (2011) The ATHENA HPV Study Group: high-risk human papillomavirus testing in women with ASC-US cytology. Am J Clin Pathol 135(3):468–475

    Google Scholar 

  • Szarewski A, Ambroisine L, Cadman L, Austin J, Ho L, Terry G, Liddle S, Dina R, McCarthy J, Buckley H, Bergeron C, Soutter P, Lyons D, Cuzick J (2008) Comparison of predictors for high-grade cervical intraepithelial neoplasia in women with abnormal smears. Cancer Epidemiol Biomark Prev 17(11):3033–3042

    Google Scholar 

  • Van den Driessche P, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci 180(1):29–48

    MathSciNet  MATH  Google Scholar 

  • World Health Organization (2015) Nepal: WHO statistical profile. http://www.who.int/gho/countries/. Accessed 01 June 2015

  • World Health Organization (2016) Population fact sheets: world. http://globocan.iarc.fr/Pages/factsheetspopulation.aspx. Accessed 14 June 2016

  • Wright T Jr, Massad L, Dunton C, Spitzer M, Wilkinson E, Solomon D (2007) 2006 consensus guidelines for the management of women with cervical intraepithelial neoplaisa or adenocarcinoma in situ. Am J Obstet Gynecol 197(4):340–345

    Google Scholar 

  • Youens K, Hosler G, Washington P, Jenevein E, Murphy K (2011) Clinical experience with the Cervista HPV HR assay: correlation of cytology and HPV status from 56,501 specimens. J Mol Diagn 13(2):160–166

    Google Scholar 

  • Zhai L, Tumban E (2016) Gardasil-9: a global survey of projected efficacy. Antivir Res 130:101–109

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jane M. Heffernan.

Appendix

Appendix

Equations representing the models found in Fig. 2:

The equations for the no-intervention model are:

$$\begin{aligned} \begin{array}{lcl} S' &{} = &{} \lambda + \gamma _{A0} A_0+ (\gamma _{I0}+\psi \gamma _{I0}) I_0 -{\frac{F_{\beta } S }{N}} - dS \\ A_0' &{} = &{} {\frac{F_{\beta } S}{N}} - (\gamma _{A0} + \alpha _{A0} +d) A_0 + \gamma _{A1} A_1 \\ A_1' &{} = &{} \alpha _{A0} A_0 - (\gamma _{A1} + \alpha _{A1} + d) A_1 + \gamma _{A2} A_2 \\ A_2' &{} = &{} \alpha _{A1} A_1 - (\gamma _{A2} + \alpha _{A2} + d) A_2 \\ I_0' &{} = &{} - (\gamma _{I0} +\psi \gamma _{I0}+ \alpha _{I0} + d) I_0 + (\gamma _{I1}+\psi \gamma _{I1}) I_1 \\ I_1' &{} = &{} - (\gamma _{I1} +\psi \gamma _{I1}+ \alpha _{I1} + d) I_1 + (\gamma _{I2}+\psi \gamma _{I2} )I_2 +\alpha _{I0} I_0 \\ I_2' &{} = &{} - (\gamma _{I2} +\psi \gamma _{I2}+ \alpha _{I2} + d) I_2 + (\gamma _{C1}+\psi \gamma _{C1}) C_1 +\alpha _{I1} I_1 \\ C_1' &{} = &{} \alpha _{A2} A_2 + \alpha _{I2} I_2 - (\gamma _{C1}+\psi \gamma _{C1} + \alpha _{C1} + d ) C_1 \\ C_2' &{} = &{} \alpha _{C1} C_1 - ( d + \delta ) C_2 \\ F_{\beta } &{} = &{} \begin{array}{l}\beta ((A_{0} + A_{1} + A_{2}) + q_{I}(I_{0} + I_{1} +I_{2}))\\ \end{array} \end{array} \end{aligned}$$
(2)

The equations that represent the screening only case are:

$$\begin{aligned} \begin{array}{ccl} S' &{} = &{} \lambda + \gamma _{A0} A_0+ (\gamma _{I0}+\psi \gamma _{I0}) I_0 -{F_{\beta } S \over N} - dS \\ A_0' &{} = &{}{\frac{ F_{\beta } S}{N}} - (\gamma _{A0} + \alpha _{A0} + \zeta \phi +d) A_0 + \gamma _{A1} A_1 \\ A_1' &{} = &{} \alpha _{A0} A_0 - (\gamma _{A1} + \alpha _{A1} + \zeta \phi + d) A_1 + \gamma _{A2} A_2 \\ A_2' &{} = &{} \alpha _{A1} A_1 - (\gamma _{A2} + \alpha _{A2} + \zeta \phi + d) A_2 \\ I_0' &{} = &{} \zeta \phi (A_0) -(\gamma _{I0} +\psi \gamma _{I0}+ \alpha _{I0} + d) I_0 + (\gamma _{I1}+\psi \gamma _{I1}) I_1 \\ I_1' &{} = &{} \zeta \phi (A_1) -(\gamma _{I1}+\psi \gamma _{I1} + \alpha _{I1} + d) I_1 + (\gamma _{I2}+\psi \gamma _{I2}) I_2 +\alpha _{I0} I_0 \\ I_2' &{} = &{} \zeta \phi (A_2) - (\gamma _{I2} + \psi \gamma _{I2}+\alpha _{I2} + d) I_2 + (\gamma _{C1}+\psi \gamma _{C1}) C_1 +\alpha _{I1} I_1 \\ C_1' &{} = &{} \alpha _{A2} A_2 + \alpha _{I2} I_2 - (\gamma _{C1}+\psi \gamma _{C1} + \alpha _{C1} + d ) C_1 \\ C_2' &{} = &{} \alpha _{C1} C_1 - ( d + \delta _{C_2}) C_2 \\ F_{\beta } &{}=&{} \begin{array}{l}\beta (q_{A}(A_{0} + A_{1} + A_{2}) + q_{I}(I_{0} + I_{1} +I_{2}))\\ \end{array} \end{array} \end{aligned}$$
(3)

The equations that represent the vaccination only case are:

$$\begin{aligned} \begin{array}{ccl} S' &{} = &{} \lambda + \gamma _{A0} A_0+ (\gamma _{I0}+\psi \gamma _{I0}) I_0 -{F_{\beta } S \over N} -\nu \rho \epsilon S - dS \\ A_0' &{} = &{} {\frac{F_{\beta } S}{N}} - (\gamma _{A0} + \alpha _{A0}+d) A_0 + \gamma _{A1} A_1 \\ A_1' &{} = &{} \alpha _{A0} A_0 - (\gamma _{A1} + \alpha _{A1} + d) A_1 + \gamma _{A2} A_2 \\ A_2' &{} = &{} \alpha _{A1} A_1 - (\gamma _{A2} + \alpha _{A2} + d) A_2 \\ I_0' &{} = &{} - (\gamma _{I0} +\psi \gamma _{I0}+ \alpha _{I0} + d) I_0 + (\gamma _{I1}+\psi \gamma _{I1})I_1 \\ I_1' &{} = &{} - (\gamma _{I1} +\psi \gamma _{I1}+ \alpha _{I1} + d) I_1 + (\gamma _{I2}+\psi \gamma _{I2}) I_2 +\alpha _{I0} I_0 \\ I_2' &{} = &{} - (\gamma _{I2} +\psi \gamma _{I2}+ \alpha _{I2} + d) I_2 +(\gamma _{C1}+\psi \gamma _{C1}) C_1 +\alpha _{I1} I_1 \\ C_1' &{} = &{} \alpha _{A2} A_2 + \alpha _{I2} I_2 + \alpha _{V2} V_2 - (\gamma _{C1} + \psi \gamma _{C1}+\alpha _{C1} + d ) C_1 \\ C_2' &{} = &{} \alpha _{C1} C_1 - ( d + \delta ) C_2 \\ S_V' &{} = &{} \nu \rho \epsilon S +\gamma _{V0} V_0 - {\frac{q F_{\beta } S_V}{N}} - d S_V \\ V_0' &{} = &{} {\frac{q F_{\beta } S_V}{N}} - (\gamma _{V0} + \alpha _{V0} + d) V_0 + \gamma _{V1} V_1 \\ V_1' &{} = &{} \alpha _{V0} V_0 - (\gamma _{V1} +\alpha _{V1} + d) V_1 + \gamma _{V2} V_2 \\ V_2' &{} = &{} \alpha _{V1} V_1 - (\gamma _{V2} +\alpha _{V2} + d) V_2 \\ F_{\beta } &{}=&{} \begin{array}{l}\beta ((A_{0} + A_{1} + A_{2}) + q_{I}(I_{0} + I_{1} +I_{2})+q_{V}(V_{0} + V_{1} +V_{2}))\\ \end{array} \end{array} \end{aligned}$$
(4)

The equations that represent the screening and vaccination case are:

$$\begin{aligned} \begin{array}{ccl} S' &{} = &{} \lambda + \gamma _{A0} A_0+ (\gamma _{I0}+\psi \gamma _{I0} )I_0 -{F_{\beta } S \over N} -\nu \rho \epsilon S - dS \\ A_0' &{} = &{} {\frac{F_{\beta } S}{N}} - (\gamma _{A0} + \alpha _{A0} + \zeta \phi +d) A_0 + \gamma _{A1} A_1 \\ A_1' &{} = &{} \alpha _{A0} A_0 - (\gamma _{A1} + \alpha _{A1} + \zeta \phi + d) A_1 + \gamma _{A2} A_2 \\ A_2' &{} = &{} \alpha _{A1} A_1 - (\gamma _{A2} + \alpha _{A2} + \zeta \phi + d) A_2 \\ I_0' &{} = &{} \zeta \phi A_0+\zeta _2\phi V_0 - (\gamma _{I0} +\psi \gamma _{I0}+ \alpha _{I0} + d) I_0 + (\gamma _{I1}+\psi \gamma _{I1}) I_1 \\ I_1' &{} = &{} \zeta \phi A_1 +\zeta _2\phi V_1 - (\gamma _{I1} +\psi \gamma _{I1} + \alpha _{I1} + d) I_1 + (\gamma _{I2}+\psi \gamma _{I2}) I_2 +\alpha _{I0} I_0 \\ I_2' &{} = &{} \zeta \phi A_2 +\zeta _2\phi V_2 - (\gamma _{I2} + \psi \gamma _{I2}+\alpha _{I2} + d) I_2 + (\gamma _{C1}+\psi \gamma _{C1}) C_1 +\alpha _{I1} I_1 \\ C_1' &{} = &{} \alpha _{A2} A_2 + \alpha _{I2} I_2 + \alpha _{V2} V_2 - (\gamma _{C1} +\psi \gamma _{C1}+\alpha _{C1} + d ) C_1 \\ C_2' &{} = &{} \alpha _{C1} C_1 - ( d + \delta ) C_2 \\ S_V' &{} = &{} \nu \rho \epsilon S + \gamma _{V0}V_0 - {\frac{q F_{\beta } S_V}{N}} - d S_V \\ V_0' &{} = &{} {\frac{ q F_{\beta } S_V}{N}} - (\gamma _{V0} + \alpha _{V0} + \zeta _2\phi + d) V_0 + \gamma _{V1} V_1 \\ V_1' &{} = &{} \alpha _{V0} V_0 - (\gamma _{V1} +\alpha _{V1} + \zeta _2 \phi + d) V_1 + \gamma _{V2}V_2 \\ V_2' &{} = &{} \alpha _{V1} V_1 - (\gamma _{V2} +\alpha _{V2} +\zeta _2 \phi + d) V_2 \\ F_{\beta } &{}=&{} \begin{array}{l}\beta ((A_{0} + A_{1} + A_{2}) + q_{I}(I_{0} + I_{1} +I_{2})+q_{V}(V_{0} + V_{1} +V_{2})\\ \end{array} \end{array} \end{aligned}$$
(5)

Equations representing the models found in Fig. 3:

The equations that represent the screen and treat model are:

$$\begin{aligned} \begin{array}{ccl} S' &{} = &{} \lambda +\gamma _{A0}A_0-{\frac{F_\beta S}{N}} -dS\\ A_0' &{} =&{} {\frac{F_\beta S}{N}}+\gamma _{A1}A_1-(\gamma _{A0}+\alpha _{A0}+\phi \zeta +d)A_0\\ A_1' &{} =&{}\alpha _{A0}A_0+\gamma _{A2}A_2-(\gamma _{A1}+\alpha _{A1}+\phi \zeta +d) A_1\\ A_2' &{} = &{}\alpha _{A1}A_1-(\gamma _{A2}+\alpha _{A2}+\phi \zeta +d) A_2\\ C_1' &{} = &{} \alpha _{A2}A_2-(\alpha _{C1}+\gamma _{C1}+d)C_1\\ C_2' &{} = &{}\alpha _{C1}C_1-(d+\delta )C_2\\ I_{0p}' &{} = &{}\phi \zeta A_0-(\kappa +d)I_{0p}\\ I_{1p}' &{} = &{}\phi \zeta A_1 -(\kappa +d)I_{1p}\\ I_{2p}' &{} = &{}\phi \zeta A_2- (\kappa +d)I_{2p}+\gamma _{C1}C_1\\ R' &{} = &{}(I_{0p}+I_{1p}+I_{2p})\kappa -dR\\ F_\beta &{}=&{} \begin{array}{l}\beta ((A_0 +A_1 +A_2)+q_{Ip}(I_{0p}+I_{1p}+I_{2p}))\\ \end{array} \end{array} \end{aligned}$$
(6)

The equations that represent the model in which only those individuals who have a high risk type of HPV are treated are:

$$\begin{aligned} \begin{array}{ccl} S' &{} = &{}\lambda +\gamma _{A0}A_0+\gamma _{I0p}I_{0p}-{\frac{F_\beta S}{N}}-dS\\ A_0' &{} =&{}{\frac{F_\beta S}{N}} +\gamma _{A1}A_1-(\gamma _{A0}+\alpha _{A0}+\zeta \phi +d)A_0\\ A_1' &{} =&{}\alpha _{A0}A_0+\gamma _{A2}A_2-(\gamma _{A1}+\alpha _{A1}+\phi \zeta +d) A_1\\ A_2' &{} = &{}\alpha _{A1}A_1-(\gamma _{A2}+\alpha _{A2}+\phi \zeta +d) A_2\\ C_1' &{} = &{} \alpha _{A2}A_2+\alpha _{I2p}I_{2p}-(\alpha _{C1}+\gamma _{C1}+d)C_1\\ C_2' &{} = &{}\alpha _{C1}C_1-(d+\delta )C_2\\ I_{0p}' &{} = &{}\phi \zeta A_0+\gamma _{I1p}I_{1p}-(\gamma _{I0p}+\alpha _{I0p}+\eta +d)I_{0p}\\ I_{1p}' &{} = &{}\phi \zeta A_1+\gamma _{I2p}I_{2p}+\alpha _{I0p}I_{0p}-(\gamma _{I1p}+\alpha _{I1p}+\eta +d)I_{1p}\\ I_{2p}' &{} = &{}\phi \zeta A_2 +\alpha _{I1p}I_{1p}-(\gamma _{I2p}+\alpha _{I2p}+\eta +d)I_{2p}\\ I_{0pT}' &{} = &{}\eta I_{0p}-(\kappa +d)I_{0pT}\\ I_{1pT}' &{} = &{}\eta I_{1p}-(\kappa +d)I_{1pT}\\ I_{2pT}' &{} = &{}\eta I_{2p}+\gamma _{C1}C_1-(\kappa +d)I_{2pT}\\ R' &{} = &{}(I_{0pT}+I_{1pT}+I_{2pT})\kappa -dR\\ F_\beta &{} = &{} \begin{array}{l}\beta ((A_0 +A_1 +A_2)+q_Ip(I_{0p}+I_{1p}+I_{2p})\\ +q_{IpT}(I_{0pT}+I_{1pT}+I_{2pT}))\\ \end{array} \end{array} \end{aligned}$$
(7)

The equations that represent the model in which there is co-testing with a cytology test and cobas4800 are:

$$\begin{aligned} S'= & {} \lambda +\gamma _{A0}A_0+\gamma _{I0p}I_{0p}+\gamma _{I0pT}I_{0pT}-{\frac{F_\beta S}{N}}-dS\nonumber \\ A_0'= & {} {\frac{F_\beta S}{N}} +\gamma _{A1}A_1-(\gamma _{A0}+\alpha _{A0}+\zeta \phi +d)A_0\nonumber \\ A_1'= & {} \alpha _{A0}A_0+\gamma _{A2}A_2-(\gamma _{A1}+\alpha _{A1}+\phi \zeta +d) A_1\nonumber \\ A_2'= & {} \alpha _{A1}A_1-(\gamma _{A2}+\alpha _{A2}+\phi \zeta +d) A_2\nonumber \\ C_1'= & {} \alpha _{A2}A_2+\alpha _{I2p}I_{2p}+\alpha _{I2pT}I_{2pT}-(\alpha _{C1}+\gamma _{C1}+d)C_1\nonumber \\ C_2'= & {} \alpha _{C1}C_1-(d+\delta )C_2\nonumber \\ I_{0p}'= & {} \phi \zeta A_0+\gamma _{I1p}I_{1p}-(\gamma _{I0p}+\alpha _{I0p}+\eta +d)I_{0p}\nonumber \\ I_{1p}'= & {} \phi \zeta A_1+\gamma _{I2p}I_{2p}+\alpha _{I0p}I_{0p}-(\gamma _{I1p}+\alpha _{I1p}+\eta +d)I_{1p}\nonumber \\ I_{2p}'= & {} \phi \zeta A_2 +\alpha _{I1p}I_{1p}-(\gamma _{I2p}+\alpha _{I2p}+\eta +d)I_{2p}\nonumber \\ I_{0pT}'= & {} \eta I_{0p}+\gamma _{I1pT}I_{1pT}-(\gamma _{I0pT}+\alpha _{I0pT}+\eta _2\phi _2+d)I_{0pT}\nonumber \\ I_{1pT}'= & {} \eta I_{1p}+\gamma _{I2pT}I_{2pT}+\alpha _{I0pT}I_{0pT}-(\gamma _{I1pT}+\alpha _{I1pT}+\eta _2 \phi _2+d)I_{1pT}\nonumber \\ I_{2pT}'= & {} \eta I_{2p}+\alpha _{I1pT}I_{1pT}+\gamma _{C1}C_1-(\gamma _{I2pT}+\alpha _{I2pT}+\eta _2 \phi _2+d)I_{2pT}\nonumber \\ I_{0pTy}'= & {} \eta _2\phi _2I_{0pT}-(\kappa +d)I_{0pTy}\nonumber \\ I_{1pTy}'= & {} \eta _2\phi _2I_{1pT}-(\kappa +d)I_{1pTy}\nonumber \\ I_{2pTy}'= & {} \eta _2\phi _2I_{2pT}-(\kappa +d)I_{2pTy}\nonumber \\ R'= & {} (I_{0pTy}+I_{1pTy}+I_{2pTy})\kappa -dR\nonumber \\ F_\beta= & {} \begin{array}{l}\beta ((A_0 +A_1 +A_2)+q_Ip(I_{0p}+I_{1p}+I_{2p})+q_{IpT}(I_{0pT}+I_{1pT}+I_{2pT})\\ +q_{IpTy}(I_{0pTy}+I_{1pTy}+I_{2pTy}))\\ \end{array}\nonumber \\ \end{aligned}$$
(8)

The equations that represent co-testing with a pap smear and cobas4800 are:

$$\begin{aligned} \begin{array}{ccl} S' &{} = &{}\lambda +\gamma _{A0}A_0+\gamma _{I0pap}I_{0pap}-{\frac{F_\beta S}{N}}-dS\\ A_0' &{} =&{}{\frac{F_\beta S}{N}} +\gamma _{A1}A_1-(\gamma _{A0}+\alpha _{A0}+\zeta \phi _{1a}+d)A_0\\ A_1' &{} =&{}\alpha _{A0}A_0+\gamma _{A2}A_2-(\gamma _{A1}+\alpha _{A1}+\phi _{1a} \zeta +d) A_1\\ A_2' &{} = &{}\alpha _{A1}A_1-(\gamma _{A2}+\alpha _{A2}+\phi _{1b} \zeta +d) A_2\\ C_1' &{} = &{} \alpha _{A2}A_2+\alpha _{I2pap}I_{2pap}-(\alpha _{C1}+\gamma _{C1}+d)C_1\\ C_2' &{} = &{}\alpha _{C1}C_1-(d+\delta )C_2\\ I_{0pap}' &{} = &{}\phi _{1a} \zeta A_0+\gamma _{I1pap}I_{1pap}-(\gamma _{I0pap}+\alpha _{I0pap}+\phi _2\eta +d)I_{0pap}\\ I_{1pap}' &{} = &{}\phi _{1a} \zeta A_1+\gamma _{I2pap}I_{2pap}+\alpha _{I0pap}I_{0pap}\\ &{}&{}-(\gamma _{I1pap}+\alpha _{I1pap}+\phi _2\eta +d)I_{1pap}\\ I_{2pap}' &{} = &{}\phi _{1b} \zeta A_2 +\alpha _{I1pap}I_{1pap}-(\gamma _{I2pap}+\alpha _{I2pap}+\phi _2\eta +d)I_{2pap}\\ I_{0pTy}' &{} = &{}\phi _2\eta I_{0pap}-(\kappa +d)I_{0pTy}\\ I_{1pTy}' &{} = &{}\phi _2\eta I_{1pap}-(\kappa +d)I_{1pTy}\\ I_{2pTy}' &{} = &{}\phi _2\eta I_{2pap}+\gamma _{C1}C_1-(\kappa +d)I_{2pTy}\\ R' &{} = &{}(I_{0pTy}+I_{1pTy}+I_{2pTy})\kappa -dR\\ F_\beta &{}=&{} \beta ((A_0 +A_1 +A_2)+q_Ip(I_{0pap}+I_{1pap}+I_{2pap})\\ &{}&{}+q_{IpT}(I_{0pTy}+I_{1pTy}+I_{2pTy}))\\ \end{array} \end{aligned}$$
(9)

The next generation method was used to calculate the \(R_0\) for the models in Fig. 2. \(R_0\) can be calculated as the spectral radius of \(FV^{-1}\). We derive the \(R_0\) for the no-intervention model only as the derivation generalizes to the larger screening and vaccination models. \(R_0\) can be calculated from the following F and V matrices:

$$\begin{aligned} F= & {} \left( \begin{array}{cccccccc} \beta &{} \beta &{} \beta &{} \beta q_II&{} \beta q_II&{} \beta q_II&{}0&{}0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0&{} 0&{}0&{}0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0&{} 0&{}0&{}0\\ 0 &{} 0 &{} 0 &{} 0 &{} 0&{} 0&{}0&{}0\\ 0 &{} 0 &{} 0 &{} 0 &{} 0&{} 0&{}0&{}0\\ 0 &{} 0 &{} 0 &{} 0 &{} 0&{} 0&{}0&{}0\\ 0 &{} 0 &{} 0 &{} 0 &{} 0&{} 0&{}0&{}0\\ 0 &{} 0 &{} 0 &{} 0 &{} 0&{} 0&{}0&{}0\\ \end{array} \right) \\ V_{(i,i)}= & {} \left( \begin{array}{c} {\gamma }_{{{ A0}}}+\alpha _{{{ A0}}}+d\\ {\gamma }_{{{ A1}}}+\alpha _{{{ A1}}}+d\\ {\gamma }_{{{ A2}}}+\alpha _{{{ A2}}}+d\\ {\gamma }_{{{ I0}}}+{\gamma }_{{{ I0}}}\psi +\alpha _{{{ I0}}} +d\\ {\gamma }_{{{ I1}}}+\psi \,{\gamma }_{{{ I1}}}+\alpha _{{{ I1}}}+d\\ {\gamma }_{{{ I2}}}+\psi \,{\gamma }_{{{ I2}}}+\alpha _{{{ I2}}}+d\\ {\gamma }_{{{ C1}}}+\psi \,{\gamma }_{{{ C1}}}+\alpha _{{{ C1}}}+d\\ d+\delta \end{array} \right) \\ V_{(i,i-1)}= & {} \left( \begin{array}{cc} -\alpha _{{{ A0}}}\\ -\alpha _{{{ A1}}}\\ 0\\ -\alpha _{{{ I0}}}\\ -\alpha _{{{ I1}}}\\ -\alpha _{{{ I2}}}\\ -\alpha _{{{ C1}}}\\ \end{array} \right) \\ V_{(i,i+1)}= & {} \left( \begin{array}{cc} -{\gamma }_{{{ A1}}}\\ -{\gamma }_{{{ A2}}}\\ 0\\ -{\gamma }_{{{ I1}}}-\psi \,{\gamma }_{{{ I1}}}\\ -{\gamma }_{{{ I2}}}-\psi \,{\gamma }_{{{ I2}}}\\ -{\gamma }_{{{ C1}}}-\psi \,{\gamma }_{{{ C1}}}\\ 0\\ \end{array} \right) \end{aligned}$$

and \(V(i,j)=0\) otherwise.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milwid, R.M., Frascoli, F., Steben, M. et al. HPV Screening and Vaccination Strategies in an Unscreened Population: A Mathematical Modeling Study. Bull Math Biol 81, 4313–4342 (2019). https://doi.org/10.1007/s11538-018-0425-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-018-0425-3

Keywords

Navigation