Bulletin of Mathematical Biology

, Volume 80, Issue 1, pp 46–63 | Cite as

What Controls the Acute Viral Infection Following Yellow Fever Vaccination?

  • James Moore
  • Hasan Ahmed
  • Jonathan Jia
  • Rama Akondy
  • Rafi Ahmed
  • Rustom Antia
Original Article


Does target cell depletion, innate immunity, or adaptive immunity play the dominant role in controlling primary acute viral infections? Why do some individuals have higher peak virus titers than others? Answering these questions is a basic problem in immunology and can be particularly difficult in humans due to limited data, heterogeneity in responses in different individuals, and limited ability for experimental manipulation. We address these questions for infections following vaccination with the live attenuated yellow fever virus (YFV-17D) by analyzing viral load data from 80 volunteers. Using a mixed effects modeling approach, we find that target cell depletion models do not fit the data as well as innate or adaptive immunity models. Examination of the fits of the innate and adaptive immunity models to the data allows us to select a minimal model that gives improved fits by widely used model selection criteria (AICc and BIC) and explains why it is hard to distinguish between the innate and adaptive immunity models. We then ask why some individuals have over 1000-fold higher virus titers than others and find that most of the variation arises from differences in the initial/maximum growth rate of the virus in different individuals.

Supplementary material

11538_2017_365_MOESM1_ESM.pdf (724 kb)
Supplementary material 1 (pdf 724 KB)


  1. Akondy RS, Johnson PL, Nakaya HI, Edupuganti S, Mulligan MJ, Lawson B, Miller JD, Pulendran B, Antia R, Ahmed R (2015) Initial viral load determines the magnitude of the human CD8 T cell response to yellow fever vaccination. PNAS 112(10):3050–3055CrossRefGoogle Scholar
  2. Antia R, Koella JC (1994) A model of non-specific immunity. J Theor Biol 168(2):141–150CrossRefGoogle Scholar
  3. Antia R, Levin BR, May RM (1994) Within-host population dynamics and the evolution and maintenance of microparasite virulence. Am Nat 144(3):457–472Google Scholar
  4. Antia R, Yates A, de Roode JC (2008) The dynamics of acute malaria infections. i. effect of the parasite’s red blood cell preference. Proc Biol Sci 275(1641):1449–58. CrossRefGoogle Scholar
  5. Baccam P, Beauchemin C, Macken CA, Hayden FG, Perelson AS (2006) Kinetics of influenza a virus infection in humans. J Virol 80(15):7590–7599CrossRefGoogle Scholar
  6. Barton ES, White DW, Cathelyn JS, Brett-McClellan KA, Engle M, Diamond MS, Miller VL, Virgin HW (2007) Herpesvirus latency confers symbiotic protection from bacterial infection. Nature 447(7142):326–329CrossRefGoogle Scholar
  7. Beauchemin CA, Handel A (2011) A review of mathematical models of influenza A infections within a host or cell culture: lessons learned and challenges ahead. BMC Public Health 11(Suppl 1):S7CrossRefGoogle Scholar
  8. Ben-Shachar R, Koelle K (2015) Minimal within-host dengue models highlight the specific roles of the immune response in primary and secondary dengue infections. J R Soc Interface 12(103):20140,886CrossRefGoogle Scholar
  9. Best K, Guedj J, Madelain V, de Lamballerie X, Lim SY, Osuna CE, Whitney JB, Perelson AS (2017) Zika plasma viral dynamics in nonhuman primates provides insights into early infection and antiviral strategies. PNAS 114(33):8847–8852CrossRefGoogle Scholar
  10. Beura LK, Hamilton SE, Bi K, Schenkel JM, Odumade OA, Casey KA, Thompson EA, Fraser KA, Rosato PC, Filali-Mouhim A et al (2016) Normalizing the environment recapitulates adult human immune traits in laboratory mice. Nature 532(7600):512–516CrossRefGoogle Scholar
  11. Canini L, Carrat F (2011) Population modeling of influenza A/H1N1 virus kinetics and symptom dynamics. J Virol 85(6):2764–2770CrossRefGoogle Scholar
  12. Carr EJ, Dooley J, Garcia-Perez JE, Lagou V, Lee JC, Wouters C, Meyts I, Goris A, Boeckxstaens G, Linterman MA, Liston A (2016) The cellular composition of the human immune system is shaped by age and cohabitation. Nat Immunol 17(4):461–468Google Scholar
  13. Chamberlin TC (1890) The method of multiple working hypotheses: with this method the dangers of parental affection for a favorite theory can be circumvented. Science 15:92–96. Google Scholar
  14. Davis MM (2008) A prescription for human immunology. Immunity 29(6):835–838CrossRefGoogle Scholar
  15. Edupuganti S, Eidex RB, Keyserling H, Akondy RS, Lanciotti R, Orenstein W, del Rio C, Pan Y, Querec T, Lipman H, Barrett A, Ahmed R, Teuwen D, Cetron M, Mulligan MJ (2013) A randomized, double-blind, controlled trial of the 17D yellow fever virus vaccine given in combination with immune globulin or placebo: comparative viremia and immunogenicity. Am J Trop Med Hyg 88(1):172–177CrossRefGoogle Scholar
  16. Elemans M, Thiébaut R, Kaur A, Asquith B (2011) Quantification of the relative importance of CTL, B cell, NK cell, and target cell limitation in the control of primary SIV-infection. PLOS Comput Biol 7(3):e1001,103CrossRefGoogle Scholar
  17. Guedj J, Thiébaut R, Commenges D (2007) Maximum likelihood estimation in dynamical models of HIV. Biometrics 63(4):1198–1206MathSciNetCrossRefMATHGoogle Scholar
  18. Handel A, Longini IM, Antia R (2010) Towards a quantitative understanding of the within-host dynamics of influenza A infections. J R Soc Interface 7(42):35–47CrossRefGoogle Scholar
  19. Handel A, Longini IM Jr, Antia R (2007) Neuraminidase inhibitor resistance in influenza: assessing the danger of its generation and spread. PLoS Comput Biol 3(12):e240. MathSciNetCrossRefGoogle Scholar
  20. Handel A, Longini IM Jr, Antia R (2010) Towards a quantitative understanding of the within-host dynamics of influenza a infections. J R Soc Interface 7(42):35–47. CrossRefGoogle Scholar
  21. Haydon DT, Matthews L, Timms R, Colegrave N (2003) Top-down or bottom-up regulation of intra-host blood-stage malaria: do malaria parasites most resemble the dynamics of prey or predator? Proc Biol Sci 270(1512):289–98. CrossRefGoogle Scholar
  22. Hilborn R, Mangel M (1997) The ecological detective: confronting models with data. Monographs in population biology 28. Princeton University Press, PrincetonGoogle Scholar
  23. Kochin BF, Yates AJ, de Roode JC, Antia R (2010) On the control of acute rodent malaria infections by innate immunity. PLoS One 5(5):e10,444. CrossRefGoogle Scholar
  24. Kuhn E, Lavielle M (2005) Maximum likelihood estimation in nonlinear mixed effects models. Comput Stat Data Anal 49(4):1020–1038MathSciNetCrossRefMATHGoogle Scholar
  25. Le D, Miller JD, Ganusov VV (2015) Mathematical modeling provides kinetic details of the human immune response to vaccination. Front Cell Infect Microbiol 4:1–13CrossRefGoogle Scholar
  26. Li Y, Handel A (2014) Modeling inoculum dose dependent patterns of acute virus infections. J Theor Biol 347:63–73CrossRefGoogle Scholar
  27. Lindstrom MJ, Bates DM (1990) Nonlinear mixed effects models for repeated measures data. Biometrics 46(3):673–687Google Scholar
  28. McQueen PG, McKenzie FE (2004) Age-structured red blood cell susceptibility and the dynamics of malaria infections. PNAS 101(24):9161–9166CrossRefGoogle Scholar
  29. Miao H, Hollenbaugh JA, Zand MS, Holden-Wiltse J, Mosmann TR, Perelson AS, Wu H, Topham DJ (2010) Quantifying the early immune response and adaptive immune response kinetics in mice infected with influenza A virus. J Virol 84(13):6687–6698CrossRefGoogle Scholar
  30. Mideo N, Savill NJ, Chadwick W, Schneider P, Read AF, Day T, Reece SE (2011) Causes of variation in malaria infection dynamics: insights from theory and data. Am Nat 178(6):E174–88. CrossRefGoogle Scholar
  31. Monath T, Staples J, Barrett A (2012) Yellow fever vaccine, 6th edn. Elsevier Saunders, Philadelphia, pp 870–968Google Scholar
  32. Osborne LC, Monticelli LA, Nice TJ, Sutherland TE, Siracusa MC, Hepworth MR, Tomov VT, Kobuley D, Tran SV, Bittinger K, Bailey AG, Laughlin AL, Bouvher JL, Wherry EJ, Bushman DF, Allen JE, Virgin HW, Artis D (2014) Virus-helminth coinfection reveals a microbiota-independent mechanism of immunomodulation. Science 345(6196):578–582Google Scholar
  33. Painter SD, Ovsyannikova IG, Poland GA (2015) The weight of obesity on the human immune response to vaccination. Vaccine 33(36):4422–4429CrossRefGoogle Scholar
  34. Pawelek KA, Huynh GT, Quinlivan M, Cullinane A, Rong L, Perelson AS (2012) Modeling within-host dynamics of influenza virus infection including immune responses. PLoS Comput Biol 8(6):e1002,588–e1002,588MathSciNetCrossRefGoogle Scholar
  35. Perelson AS (2002) Modelling viral and immune system dynamics. Nat Rev Immunol 2(1):28–36CrossRefGoogle Scholar
  36. Phillips AN (1996) Reduction of hiv concentration during acute infection: independence from a specific immune response. Science 271(5248):497–499CrossRefGoogle Scholar
  37. Pinheiro JC, Bates DM (1995) Approximations to the log-likelihood function in the nonlinear mixed-effects model. J. Comput. Gr. Stat. 4(1):12–35Google Scholar
  38. Poland G, Ovsyannikova I, Jacobson R, Smith D (2007) Heterogeneity in vaccine immune response: the role of immunogenetics and the emerging field of vaccinomics. Clin. Pharmacol. Ther. 82(6):653–664CrossRefGoogle Scholar
  39. Rai D, Pham NLL, Harty JT, Badovinac VP (2009) Tracking the total CD8 T cell response to infection reveals substantial discordance in magnitude and kinetics between inbred and outbred hosts. J Immunol 183(12):7672–7681CrossRefGoogle Scholar
  40. Regoes RR, Antia R, Garber DA, Silvestri G, Feinberg MB, Staprans SI (2004) Roles of target cells and virus-specific cellular immunity in primary simian immunodeficiency virus infection. J Virol 78(9):4866–75CrossRefGoogle Scholar
  41. Reynolds SR, Celis E, Sette A, Oratz R, Shapiro RL, Johnston D, Fotino M, Bystryn JC (1998) Hla-independent heterogeneity of CD8+ T cell responses to MAGE-3, Melan-A/MART-1, gp100, tyrosinase, MC1R, and TRP-2 in vaccine-treated melanoma patients. J Immunol 161(12):6970–6976Google Scholar
  42. Saenz RA, Quinlivan M, Elton D, MacRae S, Blunden AS, Mumford JA, Daly JM, Digard P, Cullinane A, Grenfell BT, McCauley JW, Wood JLN, Gog JR (2010) Dynamics of influenza virus infection and pathology. J Virol 84(8):3974–3983CrossRefGoogle Scholar
  43. Samson A, Lavielle M, Mentré F (2006) Extension of the saem algorithm to left-censored data in nonlinear mixed-effects model: application to HIV dynamics model. Comput Stat Data Anal 51(3):1562–1574MathSciNetCrossRefMATHGoogle Scholar
  44. Smith AM, Adler FR, Ribeiro RM, Gutenkunst RN, McAuley JL, McCullers JA, Perelson AS (2013) Kinetics of coinfection with influenza A virus and streptococcus pneumoniae. PLoS Pathog 9(3):e1003,238CrossRefGoogle Scholar
  45. Smith AM, Adler FR, Ribeiro RM, Gutenkunst RN, McAuley JL, McCullers JA, Perelson AS (2013) Kinetics of coinfection with influenza a virus and streptococcus pneumoniae. PLoS Pathog 9(3):e1003,238. CrossRefGoogle Scholar
  46. Stafford MA, Corey L, Cao Y, Daar ES, Ho DD, Perelson AS (2000) Modeling plasma virus concentration during primary hiv infection. J Theor Biol 203(3):285–301. CrossRefGoogle Scholar
  47. Yap GS, Stevenson MM (1994) Blood transfusion alters the course and outcome of plasmodium chabaudi as infection in mice. Infect Immun 62(9):3761–3765Google Scholar

Copyright information

© Society for Mathematical Biology 2017

Authors and Affiliations

  • James Moore
    • 1
  • Hasan Ahmed
    • 1
  • Jonathan Jia
    • 1
  • Rama Akondy
    • 2
  • Rafi Ahmed
    • 3
  • Rustom Antia
    • 1
  1. 1.Department of BiologyEmory UniversityAtlantaUSA
  2. 2.Department of Microbiology and ImmunologyEmory UniversityAtlantaUSA
  3. 3.Emory Vaccine CenterEmory UniversityAtlantaUSA

Personalised recommendations