Advertisement

Bulletin of Mathematical Biology

, Volume 80, Issue 1, pp 104–129 | Cite as

Trend to Equilibrium for a Reaction–Diffusion System Modelling Reversible Enzyme Reaction

  • Ján Eliaš
Original Article

Abstract

A spatio-temporal evolution of chemicals appearing in a reversible enzyme reaction and modelled by a four-component reaction–diffusion system with the reaction terms obtained by the law of mass action is considered. The large time behaviour of the system is studied by means of entropy methods.

Keywords

Enzyme reaction Reaction–diffusion system Entropy method 

Notes

Acknowledgements

This work was partially supported by a public grant as part of the Investissement d’avenir project, reference ANR-11-LABX-0056-LMH, LabEx LMH. The author would like to thank to Bao Q. Tang and Benoît Perthame for useful discussion and suggestions. He is grateful to the reviewers of the manuscript for their constructive input.

References

  1. Alberts B, Bray D, Hopkin K, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2013) Essential cell biology (chapter 3), 4th edn. Routledge, Garland ScienceGoogle Scholar
  2. Arnold A, Carrillo JA, Desvillettes L, Dolbeault J, Jüngel A, Lederman C, Markowich PA, Toscani G, Villani C (2004) Entropies and equilibria of many-particle systems: an essay on recent research. Monatshefte für Math 142(1–2):35–43MathSciNetCrossRefMATHGoogle Scholar
  3. Bothe D, Pierre M (2010) Quasi-steady-state approximation for a reaction-diffusion system with fast intermediate. J Math Anal Appl 368(1):120–132MathSciNetCrossRefMATHGoogle Scholar
  4. Bothe D, Rolland G (2015) Global existence for a class of reaction-diffusion systems with mass action kinetics and concentration-dependent diffusivities. Acta Appl Math 139(1):25–57MathSciNetCrossRefMATHGoogle Scholar
  5. Breden M, Desvillettes L, Fellner K (2017) Smoothness of moments of the solutions of discrete coagulation equations with diffusion. Monatshefte für Math 183(3):437–463MathSciNetCrossRefMATHGoogle Scholar
  6. Briggs GE, Haldane JBS (1925) A note on the kinetics of enzyme action. Biochem J 19:338–339CrossRefGoogle Scholar
  7. Burke MA, Maini PK, Murray JD (1993) Suicide substrate reaction-diffusion equations: varying the source. IMA J Math Appl Med Biol 10:97–114CrossRefMATHGoogle Scholar
  8. Carrillo JA, Jüngel A, Markowich PA, Toscani G, Unterreiter A (2001) Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities. Monatshefte für Math 133(1):1–82MathSciNetCrossRefMATHGoogle Scholar
  9. Cornejo E, Abreu N, Komeili A (2014) Compartmentalization and organelle formation in bacteria. Curr Opin Cell Biol 26:132–138CrossRefGoogle Scholar
  10. Cornish-Bowden A (2012) Fundamentals of enzyme kinetics, 4th edn. Wiley-Blackwell, HobokenGoogle Scholar
  11. Desvillettes L, Fellner K (2006) Exponential decay toward equilibrium via entropy methods for reaction-diffusion equations. J Math Anal Appl 319(1):157–176MathSciNetCrossRefMATHGoogle Scholar
  12. Desvillettes L, Fellner K (2008) Entropy methods for reaction-diffusion equations: slowly growing a-priori bounds. Rev Matemática Iberoam 24:407–431MathSciNetCrossRefMATHGoogle Scholar
  13. Desvillettes L, Fellner K (2014) Exponential convergence to equilibrium for a nonlinear reaction-diffusion systems arising in reversible chemistry. Syst Model Optim IFIP AICT 443:96–104CrossRefMATHGoogle Scholar
  14. Desvillettes L, Fellner K (2015) Duality and entropy methods for reversible reaction-diffusion equations with degenerate diffusion. Math Meth Appl Sci 38:3432–3443MathSciNetCrossRefMATHGoogle Scholar
  15. Desvillettes L, Fellner K, Pierre M, Vovelle J (2007) About global existence for quadratic systems of reaction-diffusion. J Adv Nonlinear Stud 7:491–511MATHGoogle Scholar
  16. Eliaš J (2015) Mathematical model of the role and temporal dynamics of protein p53 after drug-induced DNA damage. Ph.D. thesis, Pierre and Marie Curie UniversityGoogle Scholar
  17. Fellner K, Prager W, Tang BQ (2017) The entropy method for reaction-diffusion systems without detailed balance: first order chemical reaction networks. Kinet Relat Models 10(4):1055–1087MathSciNetCrossRefMATHGoogle Scholar
  18. Fellner K, Tang BQ (2017) Explicit exponential convergence to equilibrium for nonlinear reaction-diffusion systems with detailed balance condition. Nonlinear Anal 159:145–180MathSciNetCrossRefMATHGoogle Scholar
  19. Fitzgibbon WB, Hollis SL, Morgan JJ (1997) Stability and Lyapunov functions for reaction-diffusion systems. SIAM J Math Anal 28(3):595–610MathSciNetCrossRefMATHGoogle Scholar
  20. Gorban AN, Gorban PA, Judge G (2010) Entropy: the Markov ordering approach. Entropy 12(5):1145–1193MathSciNetCrossRefMATHGoogle Scholar
  21. Kalachev LV, Kaper HG, Kaper TJ, Popovic N, Zagaris A (2007) Reduction for Michaelis–Menten–Henri kinetics in the presence of diffusion. Electronic J Differ Equ Conf 16:155–184MathSciNetMATHGoogle Scholar
  22. Kernevez JP, Thomas D (1975) Numerical analysis and control of some biochemical systems. Appl Math Optim 1(3):222–285MathSciNetCrossRefMATHGoogle Scholar
  23. Kholodenko BN, Hancock JF, Kolch W (2010) Signalling ballet in space and time. Nat Rev Mol Cell Biol 11(6):414–426CrossRefGoogle Scholar
  24. Ladyzhenskaya OA, Solonnikov VA, Uraľtseva NN (1968) Linear and quasi-linear equations of parabolic type, vol 23. American Mathematical Soc, ProvidenceGoogle Scholar
  25. Maini PK, Burke MA, Murray JD (1991) On the quasi-steady-state assumption applied to michaelis-menten and suicide substrate reactions with diffusion. Philos Trans R Soc Lond A Math Phys Eng Sci 337(1646):299–306CrossRefMATHGoogle Scholar
  26. Michaelis L, Menten M (1913) Die kinetik der invertinwirkung. Biochem Z 49:333–369Google Scholar
  27. Mielke A, Haskovec J, Markowich PA (2014) On uniform decay of the entropy for reaction-diffusion systems. J Dyn Differ Equ 27(3):897–928MathSciNetMATHGoogle Scholar
  28. Naka T, Sakamoto N (1992) Kinetics of membrane-bound enzymes: Validity of quasi-steady-state approximation for a Michaelis–Menten-type reaction. J Membr Sci 74(1):159–170CrossRefGoogle Scholar
  29. Ni, W-M (2011) The Mathematics of Diffusion. Society for Industrial and Applied MathematicsGoogle Scholar
  30. Palsson BØ (2011) Systems biology: simulation of dynamic network states. Cambridge University Press, CambridgeCrossRefMATHGoogle Scholar
  31. Pao CV (1980) Mathematical analysis of enzyme-substrate reaction diffusion in some biochemical systems. Nonlinear Anal Theory Methods Appl 4(2):369–392MathSciNetCrossRefMATHGoogle Scholar
  32. Perthame B (2015) Parabolic equations in biology: Growth, reaction, movement and diffusion. Lecture Notes on Mathematical Modelling in the Life Sciences. Springer International PublishingGoogle Scholar
  33. Pierre M (2010) Global existence in reaction-diffusion systems with control of mass: a survey. Milan J Math 78(2):417–455MathSciNetCrossRefMATHGoogle Scholar
  34. Pierre M, Schmitt D (1997) Blow-up in reaction diffusion systems with dissipation of mass. J Math Anal 28(2):259–269MathSciNetMATHGoogle Scholar
  35. Roubíček T (2013) Nonlinear Partial Differential Equations with Application, vol. 153 of Intl. Ser. Numer. Math. Birkhäuser Basel, 2nd ednGoogle Scholar
  36. Schmidt-Dannert C, Lopez-Gallego F (2016) A roadmap for biocatalysis—functional and spatial orchestration of enzyme cascades. Microb Biotechnol 9(5):601–609CrossRefGoogle Scholar
  37. Schnell S (2014) Validity of the Michaelis–Menten equation—steady-state or reactant stationary assumption: that is the question. FEBS J 281(2):464–472CrossRefGoogle Scholar
  38. Schnell S, Maini PK (2000) Enzyme kinetics at high enzyme concentration. Bull Math Biol 62(3):483–499CrossRefMATHGoogle Scholar
  39. Schnell S, Maini PK (2002) Enzyme kinetics far from the standard quasi-steady-state and equilibrium approximations. Math Comput Model 35(1–2):137–144MathSciNetCrossRefMATHGoogle Scholar
  40. Segel LA, Slemrod M (1989) The quasi-steady-state assumption: a case study in perturbation. SIAM Rev 31(3):446–477MathSciNetCrossRefMATHGoogle Scholar
  41. Villani C (2003) Topics in optimal transportation. American Mathematical Soc, ProvidenceCrossRefMATHGoogle Scholar
  42. Yudushkin IA, Schleifenbaum A, Kinkhabwala A, Neel BG, Schultz C, Bastiaens PIH (2007) Live-cell imaging of enzyme-substrate interaction reveals spatial regulation of PTP1B. Science 315(5808):115–119CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2017

Authors and Affiliations

  1. 1.Laboratoire de Mathématiques d’OrsayUniv. Paris-Sud, CNRS, Université Paris-SaclayOrsayFrance

Personalised recommendations