Cell Physician: Reading Cell Motion

A Mathematical Diagnostic Technique Through Analysis of Single Cell Motion

Abstract

Cell motility is an essential phenomenon in almost all living organisms. It is natural to think that behavioral or shape changes of a cell bear information about the underlying mechanisms that generate these changes. Reading cell motion, namely, understanding the underlying biophysical and mechanochemical processes, is of paramount importance. The mathematical model developed in this paper determines some physical features and material properties of the cells locally through analysis of live cell image sequences and uses this information to make further inferences about the molecular structures, dynamics, and processes within the cells, such as the actin network, microdomains, chemotaxis, adhesion, and retrograde flow. The generality of the principals used in formation of the model ensures its wide applicability to different phenomena at various levels. Based on the model outcomes, we hypothesize a novel biological model for collective biomechanical and molecular mechanism of cell motion.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2002). Molecular biology of the cell. New York: Garland.

    Google Scholar 

  2. Alt, W., & Dembo, M. (1999). Cytoplasm dynamics and cell motion: two-phase flow models. Math. Biosci., 156, 207–228.

    MATH  Article  Google Scholar 

  3. Bottino, D., Mogilner, A., Roberts, T., Stewart, M., & Oster, G. (2002). How nematode sperm crawl. J. Cell Sci., 115, 367–384.

    Google Scholar 

  4. Bray, D. (2001). Cell movements. New York: Garland.

    Google Scholar 

  5. Caille, N., Thoumine, O., Tardy, Y., & Meister, J. J. (2002). Contribution of the nucleus to the mechanical properties of endothelial cells. J. Biomech., 35(2), C177–C188.

    Article  Google Scholar 

  6. Campi, G., Varma, R., & Dustin, M. L. (2005). Actin and agonist mhc-peptide complex-dependent t cell receptor microclusters as scaffolds for signaling. J. Exp. Med., 202(8), 1031–1036.

    Article  Google Scholar 

  7. Coskun, H. (2006). Mathematical models for cell movements and model based inverse problems. Ph.D. thesis, University of Iowa.

  8. Coskun, H. (2009). A continuum model with free boundary formulation and the inverse problem for ameboid cell motility. Preprint.

  9. Coskun, H., Li, Y., & Mackey, M. A. (2007). Ameboid cell motility: A model and inverse problem, with an application to live cell imaging data. J. Theor. Biol., 244(2), 169–179.

    MathSciNet  Article  Google Scholar 

  10. Dobereiner, H. G., Dubin-Thaler, B. J., Hofman, J. M., Xenias, H. S., Sims, T. N., Giannone, G., Dustin, M. L., Wiggins, C. H., & Sheetz, M. P. (2006). Lateral membrane waves constitute a universal dynamic pattern of motile cells. Phys. Rev. Lett., 97(3), 038102.

    Article  Google Scholar 

  11. Defilippi, P., Olivo, C., Venturino, M., Dolce, L., Silengo, L., & Tarone, G. (1999). Actin cytoskeleton organization in response to integrin-mediated adhesion. Microsc. Res. Tech., 47, 67–78.

    Article  Google Scholar 

  12. DiMilla, P. A., Barbee, K., & Lauffenburger, D. A. (1991). Mathematical model for the effects of adhesion and mechanics on cell migration speed. Biophys. J., 60, 15–37.

    Article  Google Scholar 

  13. Dong, C., & Skalak, R. (1992). Leukocyte deformability: finite-element modeling of large viscoelastic deformation. J. Theor. Biol., 158, 173–193.

    Article  Google Scholar 

  14. Fournier, M. F., Sauser, R., Ambrosi, D., Meister, J. J., & Verkhovsky, A. B. (2010). Force transmission in migrating cells. J. Cell Biol., 188(2), 287–297.

    Article  Google Scholar 

  15. Giannone, G., Dubin-Thaler, B. J., Rossier, O., Cai, Y., Chaga, O., Jiang, G., Beaver, W., Dobereiner, H. G., Freund, Y., Borisy, G., & Sheetz, M. P. (2007). Lamellipodial actin mechanically links myosin activity with adhesion-site formation. Cell, 128(3), 561–575.

    Article  Google Scholar 

  16. Glading, A., Lauffenburger, D. A., & Wells, A. (2002). Cutting to the chase: calpain proteases in cell motility. Trends Cell Biol., 12(1), 46–54.

    Article  Google Scholar 

  17. Gupton, S. L., Anderson, K. L., Kole, T. P., Fischer, R. S., Ponti, A., Hitchcock-DeGregori, S. E., Danuser, G., Fowler, V. M., Wirtz, D., Hanein, D., & Waterman-Storer, C. M. (2005). Cell migration without a lamellipodium. J. Cell Biol., 168(4), 619–631.

    Article  Google Scholar 

  18. Kass, M., Witkin, A., & Terzopoulos, D. (1987). Snakes: Active contour models. Int. J. Comput. Vis., 1, 321–331.

    Article  Google Scholar 

  19. Koestler, S. A., Auinger, S., Vinzenz, M., Rottner, K., & Small, J. V. (2008). Differentially oriented populations of actin filaments generated in lamellipodia collaborate in pushing and pausing at the cell front. Nat. Cell Biol., 10(3), 306–313.

    Article  Google Scholar 

  20. Krauss, K., & Altevogt, P. (1999). Integrin leukocyte function-associated antigen-1-mediated cell binding can be activated by clustering of membrane rafts. J. Biol. Chem., 274(52), 36,921–36,927.

    Article  Google Scholar 

  21. Kuusela, E., & Alt, W. (2009). Continuum model of cell adhesion and migration. J. Math. Biol., 58(1), 135–161.

    MathSciNet  MATH  Article  Google Scholar 

  22. Laude, A. J., & Prior, I. A. (2004). Plasma membrane microdomains: Organization, function and trafficking (review). Mol. Membr. Biol., 21(3), 193–205.

    Article  Google Scholar 

  23. Lee, J., Leonard, M., Oliver, T., Ishihara, A., & Jacobson, K. (1994). Traction forces generated by locomoting keratocytes. J. Cell Biol., 127(6), 1957–1964.

    Article  Google Scholar 

  24. Lekka, M., Laidler, P., Gil, D., Lekki, J., Stachura, Z., & Hrynkiewicz, A. Z. (1999). Elasticity of normal and cancerous human bladder cells studied by scanning force microscopy. Eur. Biophys. J., 28(4), 312–316.

    Article  Google Scholar 

  25. Machacek, M., & Danuser, G. (2006). Morphodynamic profiling of protrusion phenotypes. Biophys. J., 90(4), 1439–1452.

    Article  Google Scholar 

  26. Marella, S. V., & Udaykumar, H. S. (2004). Computational analysis of the deformability of leukocytes modeled with viscous and elastic structural components. Phys. Fluids, 16(2), 244–264.

    Article  Google Scholar 

  27. Mitchell, J. S., Kanca, O., & McIntyre, B. W. (2002). Lipid microdomain clustering induces a redistribution of antigen recognition and adhesion molecules on human t lymphocytes. J. Immunol., 168(6), 2737–2744.

    Google Scholar 

  28. Mogilner, A., & Edelstein-Keshet, L. (2002). Regulation of actin dynamics in rapidly moving cells: a quantitative analysis. Biophys. J., 83, 1237–1258.

    Article  Google Scholar 

  29. Mogilner, A., Marland, E., & Bottino, D. (2000). A minimal model of locomotion applied to the steady gliding movement of fish keratocyte cells. In P. K. Maini & H. G. Othmer (Eds.), IMA vol. math. appl., Frontiers in application of mathematics : Vol. 121. Mathematical models for biological pattern formation (pp. 269–294). New York: Springer.

    Google Scholar 

  30. Mogilner, A., & Verzi, D. (2003). A simple 1-D physical model for the crawling nematode sperm cell. J. Stat. Phys., 110, 1169–1189.

    MATH  Article  Google Scholar 

  31. Pollard, T., Blanchoin, L., & Mullins, R. D. (2000). Biophysics of actin filament dynamics in nonmuscle cells. Ann. Rev. Biophys. Biomol. Struct., 29, 545–576.

    Article  Google Scholar 

  32. Ponti, A., Machacek, M., Gupton, S. L., Waterman-Storer, C. M., & Danuser, G. (2004). Two distinct actin networks drive the protrusion of migrating cells. Science, 305(5691), 1782–1786.

    Article  Google Scholar 

  33. Ream, R. A., Theriot, J. A., & Somero, G. N. (2003). Influences of thermal acclimation and acute temperature change on the motility of epithelial wound-healing cells (keratocytes) of tropical, temperate and antarctic fish. J. Exp. Biol., 206(24), 4539–4551.

    Article  Google Scholar 

  34. Reynolds, A. R., Tischer, C., Verveer, P. J., Rocks, O., & Bastiaens, P. I. H. (2003). Egfr activation coupled to inhibition of tyrosine phosphatases causes lateral signal propagation. Nat. Cell Biol., 5(5), 447–453.

    Article  Google Scholar 

  35. Rubinstein, B., Fournier, M. F., Jacobson, K., Verkhovsky, A. B., & Mogilner, A. (2009). Actin-myosin viscoelastic flow in the keratocyte lamellipod. Biophys. J., 97(7), 1853–1863.

    Article  Google Scholar 

  36. Sacan, A., Ferhatosmanoglu, H., & Coskun, H. (2008). Celltrack: an open-source software for cell tracking and motility analysis. Bioinformatics, 24(14), 1647–1649.

    Article  Google Scholar 

  37. Schmid-Schönbein, G., Kosawada, T., Skalak, R., & Chien, S. (1995). Membrane model of endothelial cells and leukocytes. A proposal for the origin of a cortical stress. J. Biomech. Eng., 117, 171–178.

    Article  Google Scholar 

  38. Simons, K., & Toomre, D. (2000). Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol., 1(1), 31–39.

    Article  Google Scholar 

  39. Vallotton, P., & Small, J. V. (2009). Shifting views on the leading role of the lamellipodium in cell migration: speckle tracking revisited. J. Cell Sci., 122(12), 1955–1958.

    Article  Google Scholar 

  40. Vallotton, P., Danuser, G., Bohnet, S., Meister, J. J., & Verkhovsky, A. B. (2005). Tracking retrograde flow in keratocytes: News from the front. Mol. Biol. Cell, 16(3), 1223–1231.

    Article  Google Scholar 

  41. Ward, K., Li, W., Zimmer, S., & Davis, T. (1991). Viscoelastic properties of transformed cells: role in tumor cell progression and metastasis formation. Biorheology, 28(3–4), 301–313.

    Google Scholar 

  42. Wottawah, F., Schinkinger, S., Lincoln, B., Ebert, S., Mooller, K., Sauer, F., Travis, K., & Guck, J. (2005). Characterizing single suspended cells by optorheology. Acta Biomater., 1(3), 263–271.

    Article  Google Scholar 

  43. Yanai, M., Butler, J. P., Suzuki, T., Sasaki, H., & Higuchi, H. (2004). Regional rheological differences in locomoting neutrophils. Am. J. Physiol. Cell Physiol., 287, C603–C611.

    Article  Google Scholar 

  44. Yeung, A., & Evans, E. (1989). Cortical shell-liquid core model for passive flow of liquid-like spherical cells into micropipets. Biophys. J., 56, 139–149.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Huseyin Coskun.

Electronic Supplementary Material

Annotated PtK1 epithelial cell membrane motion shows the relation between displacement and polymerization or depolymerization (MOV 794 KB)

Annotated PtK1 epithelial cell membrane local motion (i=47,…,53) shows the relation between displacement and polymerization or depolymerization (MOV 457 KB)

Annotated PtK1 epithelial cell (lamellipodium) membrane motion (MOV 1.26 MB)

Annotated PtK1 epithelial cell lamella (transition) line motion (MOV 1.06 MB)

Annotated PtK1 epithelial cell treated with CytD (MOV 1.05 MB)

Annotated movie of a neutrophil chasing bacteria (MOV 703 KB)

Annotated movie of a keratocyte (MOV 319 KB)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Coskun, H., Coskun, H. Cell Physician: Reading Cell Motion. Bull Math Biol 73, 658–682 (2011). https://doi.org/10.1007/s11538-010-9580-x

Download citation

Keywords

  • Cell motility
  • Inverse problem
  • Material parameters
  • Actin network
  • Chemotaxis
  • Lateral signal diffusion
  • Microdomains
  • Membrane ruffling
  • Adhesion formation
  • Retrograde flow