Skip to main content
Log in

Sharp threshold phenomena in statistical physics

  • Special Feature: The Takagi Lectures
  • Published:
Japanese Journal of Mathematics Aims and scope

Abstract

This text describes the content of the Takagi Lectures given by the author in Kyoto in 2017. The lectures present some aspects of the theory of sharp thresholds for Boolean functions and its application to the study of phase transitions in statistical physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Aizenman and D.J. Barsky, Sharpness of the phase transition in percolation models, Comm. Math. Phys., 108 (1987), 489–526.

    Article  MathSciNet  MATH  Google Scholar 

  2. W. Beckner, Inequalities in Fourier analysis, Ann. of Math. (2), 102 (1975), 159–182.

    Article  MathSciNet  MATH  Google Scholar 

  3. V. Beffara and H. Duminil-Copin, The self-dual point of the two-dimensional random-cluster model is critical for q ≥ 1, Probab. Theory Related Fields, 153 (2012), 511–542.

    Article  MATH  Google Scholar 

  4. B. Bollobás and O. Riordan, The critical probability for random Voronoi percolation in the plane is 1/2, Probab. Theory Related Fields, 136 (2006), 417–468.

    Article  MathSciNet  MATH  Google Scholar 

  5. B. Bollobás and O. Riordan, Percolation, Cambridge Univ. Press, New York, 2006.

    Book  MATH  Google Scholar 

  6. B. Bollobás and O. Riordan, A short proof of the Harris–Kesten theorem, Bull. London Math. Soc., 38 (2006), 470–484.

    Article  MathSciNet  MATH  Google Scholar 

  7. B. Bollobás and O. Riordan, Percolation on self-dual polygon configurations, In: An Irregular Mind, Bolyai Soc. Math. Stud., 21, János Bolyai Math. Soc., Budapest, 2010, pp. 131–217.

    Google Scholar 

  8. A. Bonami, Étude des coefficients de Fourier des fonctions de L p(G), Ann. Inst. Fourier (Grenoble), 20 (1970), 335–402.

    Article  MathSciNet  MATH  Google Scholar 

  9. J. Bourgain, J. Kahn, G. Kalai, Y. Katznelson and N. Linial, The influence of variables in product spaces, Israel J. Math., 77 (1992), 55–64.

    Article  MathSciNet  MATH  Google Scholar 

  10. S.R. Broadbent and J.M. Hammersley, Percolation processes. I. Crystals and mazes, Proc. Cambridge Philos. Soc., 53 (1957), 629–641.

    Article  MathSciNet  MATH  Google Scholar 

  11. D. Chelkak, H. Duminil-Copin, C. Hongler, A. Kemppainen and S. Smirnov, Convergence of Ising interfaces to Schramm’s SLE curves, C. R. Acad. Sci. Paris Math., 352 (2014), 157–161.

    Article  MathSciNet  MATH  Google Scholar 

  12. H. Duminil-Copin, Geometric Representations of Lattice Spin Models, Spartacus, 2015.

    MATH  Google Scholar 

  13. H. Duminil-Copin, Lectures on the Ising and Potts models on the hypercubic lattice, preprint, arXiv:1707.00520.

  14. H. Duminil-Copin, M. Gagnebin, M. Harel, I. Manolescu and V. Tassion, Discontinuity of the phase transition for the planar random-cluster and Potts models with q ≤ 4, preprint, arXiv:1611.09877.

  15. H. Duminil-Copin and I. Manolescu, The phase transitions of the planar random-cluster and Potts models with q ≥ 1 are sharp, Probab. Theory Related Fields, 164 (2016), 865–892.

    Article  MathSciNet  MATH  Google Scholar 

  16. H. Duminil-Copin, A. Raoufi and V. Tassion, Exponential decay of connection probabilities for subcritical Voronoi percolation in Rd, preprint, arXiv:1705.07978.

  17. H. Duminil-Copin, A. Raoufi and V. Tassion, Sharp phase transition for the random-cluster and Potts models via decision trees, preprint, arXiv:1705.03104.

  18. H. Duminil-Copin, A. Raoufi and V. Tassion, Subcritical phase of d-dimensional Poisson–Boolean percolation and its vacant set, preprint, arXiv:1805.00695.

  19. H. Duminil-Copin, A. Raoufi and V. Tassion, A new computation of the critical point for the planar random-cluster model with q ≥ 1, Ann. Inst. Henri Poincaré Probab. Stat., 54 (2018), 422–436.

    Article  MathSciNet  MATH  Google Scholar 

  20. H. Duminil-Copin, V. Sidoravicius and V. Tassion, Continuity of the phase transition for planar random-cluster and Potts models with 1 ≤ q ≤ 4, Comm. Math. Phys., 349 (2017), 47–107.

    Article  MathSciNet  MATH  Google Scholar 

  21. H. Duminil-Copin and V. Tassion, A new proof of the sharpness of the phase transition for Bernoulli percolation and the Ising model, Comm. Math. Phys., 343 (2016), 725–745.

    Article  MathSciNet  MATH  Google Scholar 

  22. H. Duminil-Copin and V. Tassion, A new proof of the sharpness of the phase transition for Bernoulli percolation on Zd, Enseign. Math., 62 (2016), 199–206.

    Article  MathSciNet  MATH  Google Scholar 

  23. P. Erdős and A. Rényi, On random graphs. I, Publ. Math. Debrecen, 6 (1959), 290–297.

    MathSciNet  MATH  Google Scholar 

  24. R. Fitzner and R. van der Hofstad, Mean-field behavior for nearest-neighbor percolation in d < 10, Electron. J. Probab., 22 (2017), no. 43.

    Google Scholar 

  25. C.M. Fortuin and P.W. Kasteleyn, On the random-cluster model. I. Introduction and relation to other models, Physica, 57 (1972), 536–564.

    Article  MathSciNet  Google Scholar 

  26. B.T. Graham and G.R. Grimmett, Influence and sharp-threshold theorems for monotonic measures, Ann. Probab., 34 (2006), 1726–1745.

    Article  MathSciNet  MATH  Google Scholar 

  27. G.R. Grimmett, Percolation. 2nd ed., Grundlehren Math.Wiss., 321, Springer-Verlag, 1999.

    Book  MATH  Google Scholar 

  28. G.R. Grimmett, Inequalities and entanglements for percolation and random-cluster models, In: Perplexing Problems in Probability, Progr. Probab., 44, Birkhäuser Boston, Boston, MA, 1999, pp. 91–105.

    Chapter  Google Scholar 

  29. G.R. Grimmett, The Random-Cluster Model, Grundlehren Math. Wiss., 333, Springer-Verlag, 2006.

    Book  Google Scholar 

  30. G.R. Grimmett, S. Janson and J.R. Norris, Influence in product spaces, Adv. in Appl. Probab., 48 (2016), A, 145–152.

    Article  MathSciNet  Google Scholar 

  31. J. Kahn, G. Kalai and N. Linial, The influence of variables on Boolean functions, In: 29th Annual Symposium on Foundations of Computer Science, IEEE, 1988, pp. 68–80.

    Google Scholar 

  32. H. Kesten, The critical probability of bond percolation on the square lattice equals 1/2, Comm. Math. Phys., 74 (1980), 41–59.

    Article  MathSciNet  MATH  Google Scholar 

  33. G.A. Margulis, Probabilistic characteristics of graphs with large connectivity, Problemy Peredaci Informacii, 10 (1974), 101–108.

    MathSciNet  MATH  Google Scholar 

  34. M.V. Menshikov, Coincidence of critical points in percolation problems, Dokl. Akad. Nauk SSSR, 288 (1986), 1308–1311.

    MathSciNet  Google Scholar 

  35. R. O’Donnell, M. Saks, O. Schramm and R.A. Servedio, Every decision tree has an influential variable, In: 46th Annual IEEE Symposium on Foundations of Computer Science, IEEE, 2005, pp. 31–39.

    Google Scholar 

  36. L. Russo, A note on percolation, Z.Wahrscheinlichkeitstheorie und Verw, 43 (1978), 39–48.

    Article  MathSciNet  MATH  Google Scholar 

  37. L. Russo, On the critical percolation probabilities, Z. Wahrsch. Verw. Gebiete, 56 (1981), 229–237.

    Article  MathSciNet  MATH  Google Scholar 

  38. L. Russo, An approximate zero-one law, Z. Wahrsch. Verw. Gebiete, 61 (1982), 129–139.

    Article  MathSciNet  MATH  Google Scholar 

  39. P.D. Seymour and D.J.A. Welsh, Percolation probabilities on the square lattice, In: Advances in Graph Theory, Ann. Discrete Math., 3, North-Holland, 1978, pp. 227–245.

    Chapter  Google Scholar 

  40. M. Talagrand, On Russo’s approximate zero-one law, Ann. Probab., 22 (1994), 1576–1587.

    Article  MathSciNet  MATH  Google Scholar 

  41. V. Tassion, Planarité et localité en percolation, Ph.D. thesis, ENS Lyon, 2014.

    Google Scholar 

  42. V. Tassion, Crossing probabilities for Voronoi percolation, Ann. Probab., 44 (2016), 3385–3398.

    Article  MathSciNet  MATH  Google Scholar 

  43. A.C.C. Yao, Probabilistic computations: Toward a unified measure of complexity, In: 18th Annual Symposium on Foundations of Computer Science, IEEE, 1977, pp. 222–227.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo Duminil-Copin.

Additional information

This article is based on the 19th Takagi Lectures that the author delivered at Research Institute for Mathematical Science, Kyoto University on July 8 and 9, 2017.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duminil-Copin, H. Sharp threshold phenomena in statistical physics. Jpn. J. Math. 14, 1–25 (2019). https://doi.org/10.1007/s11537-018-1726-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11537-018-1726-x

Keywords and phrases

Mathematics Subject Classification (2010)

Navigation