Skip to main content

Advertisement

Log in

Urban Heat Island and Future Climate Change—Implications for Delhi’s Heat

  • Published:
Journal of Urban Health Aims and scope Submit manuscript

Abstract

UrbClim, the urban climate model, is used for short- and long-term projections of climate for Delhi. The projections are performed for RCP8.5 using an ensemble of 11 GCM model outputs. Various heat stress indices were employed to understand the role of urban heat island (UHI) in influencing the present and future urban climate of the city. UHI intensity based on 5% warmest nights (TNp95) was 4.1 °C and exhibits negligible change over time. However, the impact of UHI on other heat stress indices is very strong. Combined hot days and tropical nights (CHT) that influenced 58–70% of the reference time frame are expected to rise to 68–77% in near-future and to 91–97% in far-future time periods. For reference time period, urban areas experience 2.3 more number of heat wave days (NHWD) than rural areas per summer season. This difference increases to 7.1 in short-term and 13.8 in long-term projections. Similar to this trend, frequency of heat waves (FHW) for urban areas is also expected to increase from 0.8 each summer season in reference time frame to 2.1 and 5.1 in short- and long-term projections. The urban-rural difference for duration of heat waves (DHW) appears to increase from 1.7 days in past to 2.3 and 2.2 days in future, illustrating that DHW for cities will be higher than non-urban areas at least by 2 days. The intensity of heat wave (IHW) for urban land uses increases from 40 °C in reference time frame to 45 °C in short-term projection to 49 °C in far future. These values for non-urban land use were 33 °C during the baseline time period and are expected to increase to 42 °C and 46 °C in near- and far-future time frames. The results clearly indicate the contribution of UHI effects in intensifying the impacts of extreme heat and heat stress in the city.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hansen J, Sato M, Ruedy R. Perception of climate change. Proc Natl Acad Sci. 2012;109(37):E2415–23.

    Article  PubMed  Google Scholar 

  2. Ando A, Camm J, Polasky S, Solow A. Species distributions, land values, and efficient conservation. Science. 1998;279(5359):2126–8.

    Article  CAS  PubMed  Google Scholar 

  3. Hajat S, Armstrong B, Baccini M, Biggeri A, Bisanti L, Russo A, et al. Impact of high temperatures on mortality: is there an added heat wave effect? Epidemiology. 2006;17(6):632–8.

  4. Kilbourne EM. 1997. Heat waves and hot environments. The public health consequences of disasters 245–269.

  5. Sartor F, Snacken R, Demuth C, Walckiers D. Temperature, ambient ozone levels, and mortality during summer, 1994, in Belgium. Environ Res. 1995;70(2):105–13.

    Article  CAS  PubMed  Google Scholar 

  6. Semenza JC, Rubin CH, Falter KH, Selanikio JD, Flanders WD, Howe HL, et al. Heat-related deaths during the July 1995 heat wave in Chicago. N Engl J Med. 1996;335(2):84–90.

  7. Knowlton K, Rotkin-Ellman M, King G, Margolis HG, Smith D, Solomon G, et al. The 2006 California heat wave: impacts on hospitalizations and emergency department visits. Environ Health Perspect. 2009;117(1):61–7.

  8. Zander KK, Botzen WJ, Oppermann E, Kjellstrom T, Garnett ST. Heat stress causes substantial labour productivity loss in Australia. Nat Clim Chang. 2015;5(7):647–51.

    Article  Google Scholar 

  9. IPCC. Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press; 2013.

    Google Scholar 

  10. Robine JM, Cheung SLK, Le Roy S, Van Oyen H, Griffiths C, Michel JP, et al. Death toll exceeded 70,000 in Europe during the summer of 2003. C R Biol. 2008;331(2):171–8.

  11. Green HK, Andrews NJ, Bickler G, Pebody RG. Rapid estimation of excess mortality: nowcasting during the heatwave alert in England and Wales in June 2011. J Epidemiol Community Health. 2012;66(10):866–8.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Matsueda M. Predictability of Euro-Russian blocking in summer of 2010. Geophys Res Lett. 2011;38(6).

  13. Department of Health & Human Services. Heatwave Plan England. 2012;2012.

  14. Whitman S, Good G, Donoghue ER, Benbow N, Shou W, Mou S. Mortality in Chicago attributed to the July 1995 heat wave. Am J Public Health. 1997;87(9):1515–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Guirguis K, Gershunov A, Tardy A, Basu R. The impact of recent heat waves on human health in California. J Appl Meteorol Climatol. 2014;53(1):3–19.

    Article  Google Scholar 

  16. Kysely J, Kim J. Mortality during heat waves in South Korea, 1991 to 2005: how exceptional was the 1994 heat wave? Clim Res. 2009;38(2):105–16.

    Article  Google Scholar 

  17. Nishi M, Pelling M, Yamamuro M, Solecki W, Kraines S. Risk management regime and its scope for transition in Tokyo. J Extreme Events. 2016;3(03):1650011.

    Article  Google Scholar 

  18. Azhar GS, Mavalankar D, Nori-Sarma A, Rajiva A, Dutta P, Jaiswal A, et al. Heat-related mortality in India: excess all-cause mortality associated with the 2010 Ahmedabad heat wave. PLoS One. 2014;9(3):e91831.

  19. Masood I, Majid Z, Sohail S, Zia A, Raza S. The deadly heat wave of Pakistan, June 2015. Int J Occup Environ Med. 2015;6(4 October):672–247.

    Google Scholar 

  20. Hanna EG, Tait PW. Limitations to thermoregulation and acclimatization challenge human adaptation to global warming. Int J Environ Res Public Health. 2015;12(7):8034–74. https://doi.org/10.3390/ijerph120708034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Anderson GB, Bell ML. Heat waves in the United States: mortality risk during heat waves and effect modification by heat wave characteristics in 43 US communities. Environ Health Perspect. 2011;119(2):210.

    Article  PubMed  Google Scholar 

  22. Kent ST, McClure LA, Zaitchik BF, Smith TT, Gohlke JM. Heat waves and health outcomes in Alabama (USA): the importance of heat wave definition. Environ Health Persp (Online). 2014;122(2):151–8.

    Article  Google Scholar 

  23. Alexander LV, Arblaster JM. Assessing trends in observed and modelled climate extremes over Australia in relation to future projections. Int J Climatol. 2009;29(3):417–35.

    Article  Google Scholar 

  24. Frich P, Alexander L, Della-Marta P, Gleason B, Haylock M, Tank AK, et al. Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim Res. 2002;19(3):193–212.

  25. Alexander L, Zhang X, Peterson T, Caesar J, Gleason B, Klein Tank A, Haylock M, Collins D, Trewin B, Rahimzadeh F. 2006. Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res: Atmosp 111(D5).

  26. Garssen J, Harmsen C, De Beer J. 2005. The effect of the summer 2003 heat wave on mortality in the Netherlands. Text.

  27. CMA. 2012. Heat wave. Chinese Meteorological Association.

  28. Chestnut LG, Breffle WS, Smith JB, Kalkstein LS. Analysis of differences in hot-weather-related mortality across 44 US metropolitan areas. Environ Sci Pol. 1998;1(1):59–70.

    Article  Google Scholar 

  29. Keatinge WR, Donaldson GC, Cordioli E, Martinelli M, Kunst AE, Mackenbach JP, et al. Heat related mortality in warm and cold regions of Europe: observational study. BMJ: Br Med J. 2000;321(7262):670–3.

  30. Dousset B, Gourmelon F, Laaidi K, Zeghnoun A, Giraudet E, Bretin P, et al. Satellite monitoring of summer heat waves in the Paris metropolitan area. Int J Climatol. 2011;31(2):313–23. https://doi.org/10.1002/joc.2222.

  31. Jusuf SK, Wong NH, Hagen E, Anggoro R, Hong Y. The influence of land use on the urban heat island in Singapore. Habitat Int. 2007;31(2):232–42.

    Article  Google Scholar 

  32. Stone B, Hess JJ, Frumkin H. Urban form and extreme heat events: are sprawling cities more vulnerable to climate change than compact cities. Environ Health Perspect. 2010;118(10):1425–8.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zhao L, Lee X, Smith RB, Oleson K. Strong contributions of local background climate to urban heat islands. Nature. 2014;511(7508):216–9.

    Article  CAS  Google Scholar 

  34. Cheema AR. Pakistan: high-rise buildings worsened heatwave. Nature. 2015;524(7563):35.

    Article  CAS  PubMed  Google Scholar 

  35. Saeed F, Suleri AQ. Future Heatwaves in Pakistan under IPCC’s AR5 climate change scenario. Islamabad, Pakistan: Policy Brief. Sustainable Development Policy Institute; 2015.

    Google Scholar 

  36. Attri S, Tyagi A. Climate profile of India. Contribution to the Indian network of climate change assessment (NATIONAL COMMUNICATION-II). Ministry Environ Forests. 2010;1501:1–129.

    Google Scholar 

  37. Knowlton K, Kulkarni PS, Azhar SG, Mavalankar D, Jaiswal A, Connolly M, et al. Development and implementation of South Asia’s first heat-health action plan in Ahmedabad (Gujarat, India). Int J Environ Res Public Health. 2014;11(4):3473–92. https://doi.org/10.3390/ijerph110403473.

  38. Guerreiro SB, Dawson RJ, Kilsby C, Lewis E, Ford A. Future heat-waves, droughts and floods in 571 European cities. Environ Res Lett. 2018;13(3):034009.

    Article  Google Scholar 

  39. Adachi SA, Kimura F, Kusaka H, Inoue T, Ueda H. Comparison of the impact of global climate changes and urbanization on summertime future climate in the Tokyo metropolitan area. J Appl Meteorol Climatol. 2012;51(8):1441–54.

    Article  Google Scholar 

  40. Argüesoa, D., Evansa, J.P., Fitaa, L. and Bormannab, K.J., 2013. Simulated impact of urban expansion on future temperature heatwaves in Sydney. In 20th International Congress on Modelling and Simulation.

  41. Demuzere, M., De Ridder, K. and Van Lipzig, N.P.M. 2008. Modeling the energy balance in Marseille: sensitivity to roughness length parameterizations and thermal admittance. Journal of Geophysical Research: Atmospheres, 113(D16).

  42. De Ridder K, Lauwaet D, Maiheu B. UrbClim–a fast urban boundary layer climate model. Urban Climate. 2015;12:21–48.

    Article  Google Scholar 

  43. García-Díez M, Lauwaet D, Hooyberghs H, Ballester J, De Ridder K, Rodó X. Advantages of using a fast urban boundary layer model as compared to a full mesoscale model to simulate the urban heat island of Barcelona. Geosci Model Dev. 2016;9(12):4439–50.

    Article  Google Scholar 

  44. Lauwaet D, De Ridder K, Saeed S, Brisson E, Chatterjee F, van Lipzig N, et al. Assessing the current and future urban heat island of Brussels. Urban Climate. 2016;15:1–15.

  45. Lauwaet D, Hooyberghs H, Maiheu B, Lefebvre W, Driesen G, Van Looy S, et al. Detailed urban heat island projections for cities worldwide: dynamical downscaling CMIP5 global climate models. Climate. 2015;3(2):391–415.

  46. Danielson JJ, Gesch DB. 2011. Global multi-resolution terrain elevation data 2010 (GMTED2010). US Geological Survey.

  47. Bechtel B, Alexander P, Böhner J, Ching J, Conrad O, Feddema J, et al. Mapping local climate zones for a worldwide database of the form and function of cities. ISPRS Int J Geo-Inform. 2015;4(1):199–219.

  48. Mills, G., Ching, J., See, L., Bechtel, B. and Foley, M. 2015. An introduction to the WUDAPT project. Proceedings of the 9th International Conference on Urban Climate, Toulouse, France (July): 20-24.

  49. Gutman G, Ignatov A. The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models. Int J Remote Sens. 1998;19(8):1533–43.

    Article  Google Scholar 

  50. Gerland P, Raftery AE, Ševčíková H, Li N, Gu D, Spoorenberg T, et al. World population stabilization unlikely this century. Science. 2014;346(6206):234–7.

  51. Van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, et al. The representative concentration pathways: an overview. Clim Chang. 2011;109:5–31.

  52. Agarwal A, Babel MS, Maskey S, Shrestha S, Kawasaki A, Tripathi NK. Analysis of temperature projections in the Koshi River Basin, Nepal. Int J Climatol. 2016;36(1):266–79.

    Article  Google Scholar 

  53. Donat M, Alexander L, Yang H, Durre I, Vose R, Dunn R, et al. Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: the HadEX2 dataset. J Geophys Res-Atmos. 2013;118(5):2098–118.

  54. Fischer E, Schär C. Consistent geographical patterns of changes in high-impact European heatwaves. Nat Geosci. 2010;3(6):398–403.

    Article  CAS  Google Scholar 

  55. Klein Tank A, Peterson T, Quadir D, Dorji S, Zou X, Tang H, Santhosh K, Joshi U, Jaswal A, Kolli R. 2006. Changes in daily temperature and precipitation extremes in central and south Asia. J Geophysic Res: Atmos 111(D16).

  56. Sheikh M, Manzoor N, Ashraf J, Adnan M, Collins D, Hameed S, et al. Trends in extreme daily rainfall and temperature indices over South Asia. Int J Climatol. 2015;35(7):1625–37.

  57. Vincent L, Aguilar E, Saindou M, Hassane A, Jumaux G, Roy D, Booneeady P, Virasami R, Randriamarolaza L, Faniriantsoa F. 2011. Observed trends in indices of daily and extreme temperature and precipitation for the countries of the western Indian Ocean, 1961–2008. J Geophysic Res: Atmos 116(D10).

  58. McCarthy MP, Harpham C, Goodess CM, Jones PD. Simulating climate change in UK cities using a regional climate model, HadRM3. Int J Climatol. 2012;32(12):1875–88.

    Article  Google Scholar 

  59. Oleson K. Contrasts between urban and rural climate in CCSM4 CMIP5 climate change scenarios. J Clim. 2012;25(5):1390–412.

    Article  Google Scholar 

  60. Lemonsu A, Viguie V, Daniel M, Masson V. Vulnerability to heat waves: impact of urban expansion scenarios on urban heat island and heat stress in Paris (France). Urban Climate. 2015;14:586–605.

    Article  Google Scholar 

  61. Hamdi R, Giot O, De Troch R, Deckmyn A, Termonia P. Future climate of Brussels and Paris for the 2050s under the A1B scenario. Urban Clim. 2015;12:160–82.

    Article  Google Scholar 

  62. Son J-Y, Lee J-T, Gb A, Bell ML. The impact of heat waves on mortality in seven major cities in Korea. Environ Health Perspect. 2012;120(4):566–71.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Anderson BG, Bell ML. Weather-related mortality: how heat, cold, and heat waves affect mortality in the United States. Epidemiology (Cambridge Mass). 2009;20(2):205.

    Article  Google Scholar 

  64. Díaz J, Jordan A, Garcia R, López C, Alberdi J, Hernández E, et al. Heat waves in Madrid 1986–1997: effects on the health of the elderly. Int Arch Occup Environ Health. 2002;75(3):163–70.

  65. Jhajharia D, Shrivastava S, Sarkar D, Sarkar S. Temporal characteristics of pan evaporation trends under the humid conditions of northeast India. Agric For Meteorol. 2009;149(5):763–70.

    Article  Google Scholar 

Download references

Acknowledgments

The work described in this paper has received funding from the European Community’s 7th Framework Programme under Grant Agreements Nos. 308497 (RAMSES) and 308299 (NACLIM), and from the BELSPO through its Brain.be project (CORDEX.be). The authors also acknowledge the use of data from ECMWF, NCDC and NASA. The authors thankfully acknowledge the WUDAPT for using their LCZ classification methodology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richa Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, R., Hooyberghs, H., Lauwaet, D. et al. Urban Heat Island and Future Climate Change—Implications for Delhi’s Heat. J Urban Health 96, 235–251 (2019). https://doi.org/10.1007/s11524-018-0322-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11524-018-0322-y

Keywords

Navigation