Advertisement

Journal of Urban Health

, Volume 95, Issue 2, pp 278–289 | Cite as

Designing an Agent-Based Model Using Group Model Building: Application to Food Insecurity Patterns in a U.S. Midwestern Metropolitan City

  • Keumseok Koh
  • Rebecca Reno
  • Ayaz Hyder
Article

Abstract

Recent advances in computing resources have increased interest in systems modeling and population health. While group model building (GMB) has been effectively applied in developing system dynamics models (SD), few studies have used GMB for developing an agent-based model (ABM). This article explores the use of a GMB approach to develop an ABM focused on food insecurity. In our GMB workshops, we modified a set of the standard GMB scripts to develop and validate an ABM in collaboration with local experts and stakeholders. Based on this experience, we learned that GMB is a useful collaborative modeling platform for modelers and community experts to address local population health issues. We also provide suggestions for increasing the use of the GMB approach to develop rigorous, useful, and validated ABMs.

Keywords

Agent-based modeling Group model building Food insecurity Systems science System dynamics 

Notes

Acknowledgements

This study was supported by an internal seed grant, Initiative for The Ohio State University’s Food and AgriCultural Transformation (InFact) 2015-2016 Linkage and Leverage Grant, to Ayaz Hyder.

References

  1. 1.
    El-Sayed, A. M., & Galea, S., eds. Systems science and population health. 2017. Oxford University Press.  https://doi.org/10.1093/acprof:oso/9780190492397.001.0001.
  2. 2.
    Blok DJ, De Vlas SJ, Bakker R, Van Lenthe FJ. Reducing income inequalities in food consumption: explorations with an agent-based model. Am J Prev Med. 2015;49(4):605–13.  https://doi.org/10.1016/j.amepre.2015.03.042.CrossRefPubMedGoogle Scholar
  3. 3.
    Homa L, Rose J, Hovmand PS, Cherng ST, Riolo RL, Kraus A, et al. A participatory model of the paradox of primary care. Ann Fam Med. 2015;13(5):456–65.  https://doi.org/10.1370/afm.1841.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Auchincloss AH, Riolo RL, Brown DG, Cook J, Diez Roux AV. An agent-based model of income inequalities in diet in the context of residential segregation. Am J Prev Med. 2011;40(3):303–11.  https://doi.org/10.1016/j.amepre.2010.10.033.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Li Y, Kong N, Lawley MA, Pagán JA. Using systems science for population health management in primary care. J Prim Care Community Health. 2014;5(4):242–6.  https://doi.org/10.1177/2150131914536400.CrossRefPubMedGoogle Scholar
  6. 6.
    Gorman DM, Mezic J, Mezic I, Gruenewald PJ. Agent-based modeling of drinking behavior: a preliminary model and potential applications to theory and practice. Am J Public Health. 2006;96(11):2055–60.  https://doi.org/10.2105/AJPH.2005.063289.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Hyder A, Buckeridge DL, Leung B. Predictive validation of an influenza spread model. PLoS One. 2013;8(6):e65459.  https://doi.org/10.1371/journal.pone.0065459.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Zhang J, Tong L, Lamberson PJ, Durazo-arvizu RA, Luke A, Shoham DA. Leveraging social influence to address overweight and obesity using agent-based models: the role of adolescent social networks. Soc Sci Med. 2015;125:203–13.  https://doi.org/10.1016/j.socscimed.2014.05.049.CrossRefPubMedGoogle Scholar
  9. 9.
    Gilbert N Agent-based models (No. 153). 2008. Sage.Google Scholar
  10. 10.
    Semwanga AR, Nakubulwa S, Adam T. Applying a system dynamics modelling approach to explore policy options for improving neonatal health in Uganda. Health Res Policy Syst. 2016;14(1):35.  https://doi.org/10.1186/s12961-016-0101-8.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Palma A, Lounsbury DW, Schlecht NF, Agalliu I. A system dynamics model of serum prostate-specific antigen screening for prostate cancer. Am J Epidemiol. 2016;183(3):227–36.  https://doi.org/10.1093/aje/kwv262.CrossRefPubMedGoogle Scholar
  12. 12.
    Osgood ND, Dyck RF, Grassmann WK. The inter- and intragenerational impact of gestational diabetes on the epidemic of type 2 diabetes. Am J Public Health. 2011;101(1):173–9.  https://doi.org/10.2105/AJPH.2009.186890.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Hovmand PS. Community based system dynamics. Springer, New York; 2014.  https://doi.org/10.1007/978-1-4614-8763-0
  14. 14.
    Andersen DF, Richardson GP, Vennix JA. Group model building: adding more science to the craft. Syst Dyn Rev. 1997;13(2):187–201.  https://doi.org/10.1002/(SICI)1099-1727(199722)13:2<187::AID-SDR124>3.0.CO;2-O.CrossRefGoogle Scholar
  15. 15.
    Vennix JAM. Group model building: facilitating team learning using system dynamics. 1996, Chichester, UK: John Wiley.Google Scholar
  16. 16.
    Andersen DF, Vennix JA, Richardson GP, Rouwette EA. Group model building: problem structuring, policy simulation and decision support. J Oper Res Soc. 2007;58(5):691–4.  https://doi.org/10.1057/palgrave.jors.2602339.CrossRefGoogle Scholar
  17. 17.
    Hovmand PS, Rouwette EAJA, Andersen DF, Richardson GP, Kraus A Scriptapedia 4.0.6. 2013.Google Scholar
  18. 18.
    Luna-Reyes L, Martinez-Moyano I, Pardo T, Cresswell A, Andersen D, Richardson G. Anatomy of a group model-building intervention: building dynamic theory from case study research. Syst Dyn Rev. 2006;22(4):291–320.  https://doi.org/10.1002/sdr.349.CrossRefGoogle Scholar
  19. 19.
    Bousquet F, Trébuil G (2005). Introduction to companion modeling and multi-agent systems for integrated natural resource management in Asia. In: Bousquet F, Trébuil G, Hardy B, editors. Companion modeling and multi-agent systems for integrated natural resource management in Asia. 2005: 1–20.Google Scholar
  20. 20.
    Castella JC, Trung TN, Boissau S. Participatory simulation of land-use changes in the northern mountains of Vietnam: the combined use of an agent-based model, a role-playing game, and a geographic information system. Ecol Soc. 2005;10(1):27.CrossRefGoogle Scholar
  21. 21.
    Van Berkel DB, Verburg PH. Combining exploratory scenarios and participatory backcasting: using an agent-based model in participatory policy design for a multi-functional landscape. Landsc Ecol. 2012;27(5):641–58.  https://doi.org/10.1007/s10980-012-9730-7.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Naivinit W, Le Page C, Trébuil G, Gajaseni N. Participatory agent-based modeling and simulation of rice production and labor migrations in Northeast Thailand. Environ Model Softw. 2010;25(11):1345–58.  https://doi.org/10.1016/j.envsoft.2010.01.012.CrossRefGoogle Scholar
  23. 23.
    Hewitt R, Van Delden H, Escobar F. Participatory land use modelling, pathways to an integrated approach. Environ Model Softw. 2014;52:149–65.  https://doi.org/10.1016/j.envsoft.2013.10.019.CrossRefGoogle Scholar
  24. 24.
    Rose J, Homa L, Hovmand P, Kraus A, Burgess K, Biswas A, Stange KC Boundary objects for participatory group model building of agent-based models. 2015; 2950–2959. 2015 I.E. 48th Hawaii International Conference.Google Scholar
  25. 25.
    Frerichs L, Lich KH, Dave G, Corbie-Smith G. Integrating systems science and community-based participatory research to achieve health equity. Am J Public Health. 2016;106(2):215–22.  https://doi.org/10.2105/AJPH.2015.302944.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    AnyLogic. Vers. 7. Computer software 2016. The AnyLogic Company, Chicago, ILGoogle Scholar
  27. 27.
    Hammond RA. Considerations and best practices in agent-based modeling to inform policy. In: Wallace R, Geller A, Ogawa VA, editors. Assessing the use of agent-based models for tobacco regulation. Washington (DC): National Academies Press (US); 2015. Appendix A. Available from: https://www.ncbi.nlm.nih.gov/books/NBK305917/. Accessed 20 Nov 2017
  28. 28.
    Goodman RM, Speers MA, McLeroy K, Fawcett S, Kegler M, Parker E. Identifying and defining the dimensions of community capacity to provide a basis for measurement. Health Educ Behav. 1998;25(3):258–78.  https://doi.org/10.1177/109019819802500303.CrossRefPubMedGoogle Scholar
  29. 29.
    Åberg AC, Halvorsen K, From I, Bruhn ÅB, Oestreicher L, Melander-Wikman A. A study protocol for applying user participation and co-learning—lessons learned from the eBalance project. Ory MG, Smith ML, eds. Int. J. Environ. Res. Publ. Health. 2017;14(5):512.Google Scholar

Copyright information

© The New York Academy of Medicine 2018

Authors and Affiliations

  1. 1.Division of Environmental Health Sciences, College of Public HealthThe Ohio State UniversityColumbusUSA
  2. 2.Maternal and Child Health Department, School of Public HealthUniversity of California, BerkeleyBerkeleyUSA
  3. 3.Division of Environmental Health Sciences, College of Public HealthThe Ohio State UniversityColumbusUSA

Personalised recommendations