Immune Checkpoint Blockade in Patients with Triple-Negative Breast Cancer

Abstract

Triple-negative breast cancer constitutes ~ 15% of all breast cancer subtypes. Because of the negative hormone receptor and human epidermal growth factor receptor 2 status, therapy is mainly based on chemotherapy with a poor median overall survival in the metastatic setting of ~ 18 months. Compared to other breast cancer subtypes, triple-negative breast cancer is characterized by a higher mutational load, which renders the tumor immunogenic and amenable to immunotherapeutic intervention. Based on the promising results of immunotherapy in other cancer entities, including melanoma or non-small cell lung cancer, a vast number of studies are currently assessing immunotherapeutic approaches in patients with triple-negative breast cancer. While monotherapies with antibodies against programmed death-1 and programmed death ligand-1 have shown little efficacy in patients with heavily pretreated metastatic triple-negative breast cancer, treatment efficacy likely depends on the therapeutic setting, the treatment line, and the combination of immunotherapies with other anticancer drugs. Several studies are currently evaluating the safety and efficacy of immune checkpoint inhibition in combination with chemotherapy, angiogenesis inhibitors, poly(ADP-ribose) polymerase inhibitors, as well as radiotherapy in the metastatic and (neo-)adjuvant settings. The US Food and Drug Administration approval of nab-paclitaxel in combination with atezolizumab in 2019 presented a landmark therapeutic development for patients with triple-negative breast cancer, given the limited treatment options available for this highly aggressive disease. In this review, we provide an overview on important ongoing and completed immunotherapeutic studies in triple-negative breast cancer and their possible implications for clinical practice.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.

    Article  Google Scholar 

  2. 2.

    Goldhirsch A, Wood WC, Coates AS, Gelber RD, Thürlimann B, Senn H-J, et al. Strategies for subtypes: dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann Oncol. 2011;22(8):1736–47.

  3. 3.

    Turner N, Tutt A, Ashworth A. Hallmarks of “BRCAness” in sporadic cancers. Nat Rev Cancer. 2004;4:814–9.

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Lord CJ, Ashworth A. BRCAness revisited. Nat Rev Cancer. 2016;16:110–20.

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Hwang K-T, Kim J, Jung J, Chang JH, Chai YJ, Oh SW, et al. Impact of breast cancer subtypes on prognosis of women with operable invasive breast cancer: a population-based study using SEER database. Clin Cancer Res. 2019;25:1970–9.

    PubMed  Google Scholar 

  6. 6.

    Gluz O, Liedtke C, Gottschalk N, Pusztai L, Nitz U, Harbeck N. Triple-negative breast cancer:—current status and future directions. Ann Oncol. 2009;20:1913–27.

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Fremd C, Jaeger D, Schneeweiss A. Targeted and immuno-biology driven treatment strategies for triple-negative breast cancer: current knowledge and future perspectives. Expert Rev Anticancer Ther. 2019;19:29–422.

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Schneeweiss A, Denkert C, Fasching PA, Fremd C, Gluz O, Kolberg-Liedtke C, et al. Diagnosis and therapy of triple-negative breast c ancer (TNBC): recommendations for daily routine practice. Geburtsh Frauenheilk. 2019;79:605–17.

    PubMed  Article  Google Scholar 

  9. 9.

    Cortazar P, Zhang L, Untch M, Mehta K, Costantino JP, Wolmark N, et al. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet. 2014;384:164–72.

    PubMed  Article  Google Scholar 

  10. 10.

    Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA, et al. Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res. 2007;13:4429–34.

    PubMed  Article  Google Scholar 

  11. 11.

    Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2011;121:2750–67.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Lehmann BD, Jovanović B, Chen X, Estrada MV, Johnson KN, Shyr Y, et al. Refinement of triple-negative breast cancer molecular subtypes: implications for neoadjuvant chemotherapy selection. PLoS ONE. 2016;11:e0157368.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  13. 13.

    Liedtke C, Mazouni C, Hess KR, André F, Tordai A, Mejia JA, et al. Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol. 2008;26:1275–81.

    PubMed  Article  Google Scholar 

  14. 14.

    von Minckwitz G, Untch M, Blohmer J-U, Costa SD, Eidtmann H, Fasching PA, et al. Definition and impact of pathologic complete response on prognosis after neoadjuvant chemotherapy in various intrinsic breast cancer subtypes. J Clin Oncol. 2012;30:1796–804.

    Article  Google Scholar 

  15. 15.

    Karn T, Jiang T, Hatzis C, Sänger N, El-Balat A, Rody A, et al. Association between genomic metrics and immune infiltration in triple-negative breast cancer. JAMA Oncol. 2017;3:1707–11.

    PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Foulkes WD, Smith IE, Reis-Filho JS. Triple-negative breast cancer. N Engl J Med. 2010;363:1938–48.

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Denkert C, von Minckwitz G, Darb-Esfahani S, Lederer B, Heppner BI, Weber KE, et al. Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: a pooled analysis of 3771 patients treated with neoadjuvant therapy. Lancet Oncol. 2018;19:40–50.

    PubMed  Article  Google Scholar 

  18. 18.

    Loi S, Michiels S, Salgado R, Sirtaine N, Jose V, Fumagalli D, et al. Tumor infiltrating lymphocytes are prognostic in triple negative breast cancer and predictive for trastuzumab benefit in early breast cancer: results from the FinHER trial. Ann Oncol. 2014;25:1544–50.

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Barroso-Sousa R, Jain E, Cohen O, Kim D, Buendia-Buendia J, Winer E, et al. Prevalence and mutational determinants of high tumor mutation burden in breast cancer. Ann Oncol. 2020;31:387–94.

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Ceeraz S, Nowak EC, Noelle RJ. B7 family checkpoint regulators in immune regulation and disease. Trends Immunol. 2013;34:556–63.

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Schütz F, Stefanovic S, Mayer L, von Au A, Domschke C, Sohn C. PD-1/PD-L1 pathway in breast cancer. Oncol Res Treat. 2017;40:294–7.

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Zhang X, Kim S, Hundal J, Herndon JM, Li S, Petti AA, et al. Breast cancer neoantigens can induce CD8+ T-cell responses and antitumor immunity. Cancer Immunol Res. 2017;5:516–23.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  23. 23.

    Jung K, Choi I. Emerging co-signaling networks in T cell immune regulation. Immune Netw. 2013;13:184–93.

    PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Pentcheva-Hoang T, Corse E, Allison JP. Negative regulators of T-cell activation: potential targets for therapeutic intervention in cancer, autoimmune disease, and persistent infections. Immunol Rev. 2009;229:67–87.

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Fife BT, Bluestone JA. Control of peripheral T-cell tolerance and autoimmunity via the CTLA-4 and PD-1 pathways. Immunol Rev. 2008;224:166–82.

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Sharpe AH, Wherry EJ, Ahmed R, Freeman GJ. The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat Immunol. 2007;8:239–45.

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Brahmer JR, Tykodi SS, Chow LQM, Hwu W-J, Topalian SL, Hwu P, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366:2455–65.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Robert C, Long GV, Brady B, Dutriaux C, Maio M, Mortier L, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372:320–30.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Ali HR, Glont S-E, Blows FM, Provenzano E, Dawson S-J, Liu B, et al. PD-L1 protein expression in breast cancer is rare, enriched in basal-like tumours and associated with infiltrating lymphocytes. Ann Oncol. 2015;26:1488–93.

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Schmid P, Adams S, Rugo HS, Schneeweiss A, Barrios CH, Iwata H, et al. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N Engl J Med. 2018;379:2108–21.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Dirix LY, Takacs I, Jerusalem G, Nikolinakos P, Arkenau H-T, Forero-Torres A, et al. Avelumab, an anti-PD-L1 antibody, in patients with locally advanced or metastatic breast cancer: a phase 1b JAVELIN sSolid tTumor study. Breast Cancer Res Treat. 2018;167:671–86.

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Hirsch FR, McElhinny A, Stanforth D, Ranger-Moore J, Jansson M, Kulangara K, et al. PD-L1 immunohistochemistry assays for lung cancer: results from phase 1 of the Blueprint PD-L1 IHC Assay Comparison Project. J Thorac Oncol. 2017;12:208–22.

    PubMed  Article  Google Scholar 

  33. 33.

    Taube JM, Klein A, Brahmer JR, Xu H, Pan X, Kim JH, et al. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res. 2014;20:5064–74.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Gonzalez-Ericsson PI, Stovgaard ES, Sua LF, Reisenbichler E, Kos Z, Carter JM, et al. The path to a better biomarker: application of a risk management framework for the implementation of PD-L1 and TILs as immuno-oncology biomarkers in breast cancer clinical trials and daily practice. J Pathol. 2020;250:667–84.

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Nanda R, Chow LQM, Dees EC, Berger R, Gupta S, Geva R, et al. Pembrolizumab in patients with advanced triple-negative breast cancer: phase Ib KEYNOTE-012 study. J Clin Oncol. 2016;34:2460–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Adams S, Schmid P, Rugo HS, Winer EP, Loirat D, Awada A, et al. Pembrolizumab monotherapy for previously treated metastatic triple-negative breast cancer: cohort A of the phase II KEYNOTE-086 study. Ann Oncol. 2019;30:397–404.

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Adams S, Loi S, Toppmeyer D, Cescon DW, De Laurentiis M, Nanda R, et al. Pembrolizumab monotherapy for previously untreated, PD-L1-positive, metastatic triple-negative breast cancer: cohort B of the phase II KEYNOTE-086 study. Ann Oncol. 2019;30:405–11.

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Cortés J, Lipatov O, Im S, Gonçalves A, Lee KS, Schmid P, et al. KEYNOTE-119: phase 3 study of pembrolizumab (pembro) versus single-agent chemotherapy (chemo) for metastatic triple-negative breast cancer (mTNBC). Ann Oncol. 30:v851–34.

  39. 39.

    Emens LA, Cruz C, Eder JP, Braiteh F, Chung C, Tolaney SM, et al. Long-term clinical outcomes and biomarker analyses of atezolizumab therapy for patients with metastatic triple-negative breast cancer: a phase 1 study. JAMA Oncol. 2019;5:74–82.

    PubMed  Article  Google Scholar 

  40. 40.

    Gobbini E, Ezzalfani M, Diéras V, Bachelot T, Brain E, Debled M, et al. Time trends of overall survival among metastatic breast cancer patients in the real-life ESME cohort. Eur J Cancer. 2018;96:17–24.

    PubMed  Article  Google Scholar 

  41. 41.

    Yardley DA, Coleman R, Conte P, Cortés J, Brufsky A, Shtivelband M, et al. Nab-paclitaxel plus carboplatin or gemcitabine versus gemcitabine plus carboplatin as first-line treatment of patients with triple-negative metastatic breast cancer: results from the tnAcity trial. Ann. Oncol. 2018;29:1763–70.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Cardoso F, Senkus E, Costa A, Papadopoulos E, Aapro M, André F, et al. 4th ESO-ESMO international consensus guidelines for advanced breast cancer (ABC 4). Ann Oncol. 2018;29:1634–57.

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Miller K, Wang M, Gralow J, Dickler M, Cobleigh M, Perez EA, et al. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med. 2007;357:2666–76.

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Tutt A, Tovey H, Cheang MCU, Kernaghan S, Kilburn L, Gazinska P, et al. Carboplatin in BRCA1/2-mutated and triple-negative breast cancer BRCAness subgroups: the TNT trial. Nat Med. 2018;24:628–37.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Miles DW, Chan A, Dirix LY, Cortés J, Pivot X, Tomczak P, et al. Phase III study of bevacizumab plus docetaxel compared with placebo plus docetaxel for the first-line treatment of human epidermal growth factor receptor 2-negative metastatic breast cancer. J Clin Oncol. 2010;28:3239–47.

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Emens LA, Middleton G. The interplay of immunotherapy and chemotherapy: harnessing potential synergies. Cancer Immunol Res. 2015;3:436–43.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Hanoteau A, Newton JM, Krupar R, Huang C, Liu H-C, Gaspero A, et al. Tumor microenvironment modulation enhances immunologic benefit of chemoradiotherapy. J Immunother Cancer. 2019;7:10.

    PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Pol J, Vacchelli E, Aranda F, Castoldi F, Eggermont A, Cremer I, et al. Trial watch: immunogenic cell death inducers for anticancer chemotherapy. Oncoimmunology. 2015;4:e1008866.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  49. 49.

    Heinhuis KM, Ros W, Kok M, Steeghs N, Beijnen JH, Schellens JHM. Enhancing antitumor response by combining immune checkpoint inhibitors with chemotherapy in solid tumors. Ann Oncol. 2019;30:219–35.

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Esteva FJ, Hubbard-Lucey VM, Tang J, Pusztai L. Immunotherapy and targeted therapy combinations in metastatic breast cancer. Lancet Oncol. 2019;20:e175–e186186.

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Tolaney SM, Kalinsky K, Kaklamani V, Savulsky C, Olivo M, Aktan G, et al. Abstract PD6–13: phase 1b/2 study to evaluate eribulin mesylate in combination with pembrolizumab in patients with metastatic triple-negative breast cancer. Cancer Res. 2018;78:PD6–13.

  52. 52.

    Adams S, Diamond JR, Hamilton E, Pohlmann PR, Tolaney SM, Chang C-W, et al. Atezolizumab plus nab-paclitaxel in the treatment of metastatic triple-negative breast cancer with 2-year survival follow-up: a phase 1b clinical trial. JAMA Oncol. 2019;5:334–42.

    PubMed  Article  Google Scholar 

  53. 53.

    Schmid P, Rugo HS, Adams S, Schneeweiss A, Barrios CH, Iwata H, et al. Atezolizumab plus nab-paclitaxel as first-line treatment for unresectable, locally advanced or metastatic triple-negative breast cancer (IMpassion130): updated efficacy results from a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2020;21:44–59.

    CAS  PubMed  Article  Google Scholar 

  54. 54.

    ClinicalTrials.gov. A study of atezolizumab and paclitaxel versus placebo and paclitaxel in participants with previously untreated locally advanced or metastatic triple negative breast cancer (TNBC) (IMpassion131). https://clinicaltrials.gov/ct2/show/NCT03125902. Accessed 17 May 2020.

  55. 55.

    ClinicalTrials.gov. A study of pembrolizumab with carboplatin and gemcitabine in patients with metastatic triple negative breast cancer. https://clinicaltrials.gov/ct2/show/NCT02755272. Accessed 17 May 2020.

  56. 56.

    Cortés J, Guo Z, Karantza V, Aktan G. Abstract CT069: KEYNOTE-355: randomized, double-blind, phase III study of pembrolizumab plus chemotherapy vs placebo plus chemotherapy for previously untreated, locally recurrent, inoperable or metastatic triple-negative breast cancer (mTNBC). Cancer Res. 2017;77:CT069.

  57. 57.

    Merck’s Keytruda® (pembrolizumab) in combination with chemotherapy met primary endpoint of progression-free survival (PFS) as first-line treatment for metastatic triple-negative breast cancer (mTNBC). https://investors.merck.com/news/press-release-details/2020/Mercks-KEYTRUDA-pembrolizumab-in-Combination-with-Chemotherapy-Met-Primary-Endpoint-of-Progression-Free-Survival-PFS-as-First-Line-Treatment-for-Metastatic-Triple-Negative-Breast-Cancer-mTNBC/default.aspx. Accessed 12 May 2020.

  58. 58.

    Voorwerk L, Slagter M, Horlings HM, Sikorska K, van de Vijver KK, de Maaker M, et al. Immune induction strategies in metastatic triple-negative breast cancer to enhance the sensitivity to PD-1 blockade: the TONIC trial. Nat Med. 2019;25:920–8.

    CAS  PubMed  Article  Google Scholar 

  59. 59.

    Couch FJ, Hart SN, Sharma P, Toland AE, Wang X, Miron P, et al. Inherited mutations in 17 breast cancer susceptibility genes among a large triple-negative breast cancer cohort unselected for family history of breast cancer. J Clin Oncol. 2015;33:304–11.

    CAS  PubMed  Article  Google Scholar 

  60. 60.

    Jiao S, Xia W, Yamaguchi H, Wei Y, Chen M-K, Hsu J-M, et al. PARP inhibitor upregulates PD-L1 expression and enhances cancer-associated immunosuppression. Clin Cancer Res. 2017;23:3711–20.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. 61.

    Pantelidou C, Sonzogni O, De Oliveria TM, Mehta AK, Kothari A, Wang D, et al. PARP inhibitor efficacy depends on CD8+ T-cell recruitment via intratumoral STING pathway activation in BRCA-deficient models of triple-negative breast cancer. Cancer Discov. 2019;9:722–37.

    PubMed  PubMed Central  Article  Google Scholar 

  62. 62.

    Domchek S, Postel-Vinay S, Im S-A, Park YH, Delord JP, Italiano A, et al. Phase II study of olaparib (O) and durvalumab (D) (MEDIOLA): uUpdated results in patients (pts) with germline BRCA-mutated (gBRCAm) metastatic breast cancer (MBC). Ann Oncol. 2019;30:v477.

    Article  Google Scholar 

  63. 63.

    Vinayak S, Tolaney SM, Schwartzberg L, Mita M, McCann G, Tan AR, et al. Open-label clinical trial of niraparib combined with pembrolizumab for treatment of advanced or metastatic triple-negative breast cancer. JAMA Oncol. 2019;5(8):1132–40.

    PubMed Central  Article  Google Scholar 

  64. 64.

    Armstrong AC, Clay V. Olaparib in germline-mutated metastatic breast cancer: implications of the OlympiAD trial. Future Oncol. 2019;15:2327–35.

    CAS  PubMed  Article  Google Scholar 

  65. 65.

    Robson ME, Tung N, Conte P, Im S-A, Senkus E, Xu B, et al. OlympiAD final overall survival and tolerability results: olaparib versus chemotherapy treatment of physician's choice in patients with a germline BRCA mutation and HER2-negative metastatic breast cancer. Ann. Oncol. 2019;30:558–66.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. 66.

    ClinicalTrials.gov. Phase II multicenter study of durvalumab and olaparib in platinum treated advanced triple negative breast cancer (DORA). clinicaltrials.gov. https://clinicaltrials.gov/ct2/show/NCT03167619. Accessed 12 May 2020.

  67. 67.

    ClinicalTrials.gov. Phase I/II study of the anti-programmed death ligand-1 antibody MEDI4736 in combination with olaparib and/or cediranib for advanced solid tumors, advanced or recurrent ovarian, triple negative breast, lung, prostate, colorectal cancers. https://clinicaltrials.gov/ct2/show/NCT02484404. Accessed 12 May 2020.

  68. 68.

    ClinicalTrials.gov. Veliparib and atezolizumab either alone or in combination in treating patients with stage III-IV triple negative breast cancer. https://clinicaltrials.gov/ct2/show/NCT02849496. Accessed 12 May 2020.

  69. 69.

    Wallin JJ, Bendell JC, Funke R, Sznol M, Korski K, Jones S, et al. Atezolizumab in combination with bevacizumab enhances antigen-specific T-cell migration in metastatic renal cell carcinoma. Nat Commun. 2016;7:12624.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  70. 70.

    Tini P, Pirtoli L. Combining ipilimumab and bevacizumab in glioblastoma is really safe and effective? Clin Oncol (R Coll Radiol). 2016;28:663.

    CAS  PubMed  Article  Google Scholar 

  71. 71.

    Hodi FS, Lawrence D, Lezcano C, Wu X, Zhou J, Sasada T, et al. Bevacizumab plus ipilimumab in patients with metastatic melanoma. Cancer Immunol Res. 2014;2:632–42.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  72. 72.

    Abuodeh Y, Venkat P, Kim S. Systematic review of case reports on the abscopal effect. Curr Probl Cancer. 2016;40:25–37.

    PubMed  Article  Google Scholar 

  73. 73.

    Ludgate CM. Optimizing cancer treatments to induce an acute immune response: radiation abscopal effects, PAMPs, and DAMPs. Clin. Cancer Res. 2012;18:4522–5.

    CAS  PubMed  Article  Google Scholar 

  74. 74.

    Demaria S, Ng B, Devitt ML, Babb JS, Kawashima N, Liebes L, et al. Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int J Radiat Oncol Biol Phys. 2004;58:862–70.

    PubMed  Article  Google Scholar 

  75. 75.

    Ho AY, Barker CA, Arnold BB, Powell SN, Hu ZI, Gucalp A, et al. A phase 2 clinical trial assessing the efficacy and safety of pembrolizumab and radiotherapy in patients with metastatic triple-negative breast cancer. Cancer. 2020;126:850–60.

    CAS  PubMed  Article  Google Scholar 

  76. 76.

    Barroso-Sousa R, Krop IE, Trippa L, Tan-Wasielewski Z, Li T, Osmani W, et al. A phase II study of pembrolizumab in combination with palliative radiotherapy for hormone receptor-positive metastatic breast cancer. Clin Breast Cancer. 2020;20:238–45.

  77. 77.

    German AGO guidelines for breast cancer, V2020.1. https://www.ago-online.de/fileadmin/ago-online/downloads/_leitlinien/kommission_mamma/2020/PDF_EN/2020E%252012_Neoadjuvant%2520%28Primary%29%2520Systemic%2520Therapy.pdf. Accessed 12 May 2020.

  78. 78.

    Huober J, von Minckwitz G, Denkert C, Tesch H, Weiss E, Zahm DM, et al. Effect of neoadjuvant anthracycline-taxane-based chemotherapy in different biological breast cancer phenotypes: overall results from the GeparTrio study. Breast Cancer Res. Treat. 2010;124:133–40.

    CAS  PubMed  Article  Google Scholar 

  79. 79.

    Schmid P, Salgado R, Park YH, Munoz-Couselo E, Kim S-B, Sohn J, et al. Pembrolizumab plus chemotherapy as neoadjuvant treatment of high-risk, early-stage triple-negative breast cancer: results from the phase 1b open-label, multicohort KEYNOTE-173 study. Ann Oncol. 2020;31(5):569–81.

  80. 80.

    Schmid P, Park YH, Munoz-Couselo E, Kim S-B, Sohn J, Im S-A, et al. KEYNOTE-173: phase 1b multicohort study of pembrolizumab (Pembro) in combination with chemotherapy as neoadjuvant treatment for triple-negative breast cancer (TNBC). Cancer Res. 2019;79.

  81. 81.

    Nanda R, Liu MC, Yau C, Asare S, Hylton N, Van't Veer L, et al. Pembrolizumab plus standard neoadjuvant therapy for high-risk breast cancer (BC): results from I-SPY 2. J Clin Oncol. 2017;35.

  82. 82.

    Schmid P, Cortés J, Pusztai L, McArthur H, Kümmel S, Bergh J, et al. Pembrolizumab for early triple-negative breast cancer. N Engl J Med. 2020;382:810–21.

    CAS  PubMed  Article  Google Scholar 

  83. 83.

    Gianni L, Huang C-S, Egle D, Bermejo B, Zamagni C, Thill M, et al. GS3-04. Pathologic complete response (pCR) to neoadjuvant treatment with or without atezolizumab in triple negative, early high-risk and locally advanced breast cancer: NeoTRIPaPDL1 Michelangelo randomized study. San Antonio Breast Cancer Symposium; 2019.

  84. 84.

    Loibl S, Untch M, Burchardi N, Huober J, Sinn BV, Blohmer J-U, et al. A randomised phase II study investigating durvalumab in addition to an anthracycline taxane-based neoadjuvant therapy in early triple negative breast cancer:—clinical results and biomarker analysis of GeparNuevo study. Ann. Oncol. 2019;30(8):1279–88.

    CAS  PubMed  Article  Google Scholar 

  85. 85.

    ClinicalTrials.gov. A study to investigate atezolizumab and chemotherapy compared with placebo and chemotherapy in the neoadjuvant setting in participants with early stage triple negative breast cancer (IMpassion031). https://clinicaltrials.gov/ct2/show/NCT03197935. Accessed 17 May 2020.

  86. 86.

    Masuda N, Lee S-J, Ohtani S, Im Y-H, Lee E-S, Yokota I, et al. Adjuvant capecitabine for breast cancer after preoperative chemotherapy. N Engl J Med. 2017;376:2147–59.

    CAS  PubMed  Article  Google Scholar 

  87. 87.

    ClinicalTrials.gov. Testing MK-3475 (pembrolizumab) as adjuvant therapy for triple receptor-negative breast cancer. https://clinicaltrials.gov/ct2/show/NCT02954874. Accessed 12 May 2020.

  88. 88.

    ClinicalTrials.gov. Efficacy and safety of atezolizumab plus capecitabine adjuvant therapy for triple receptor-negative breast cancer. https://clinicaltrials.gov/ct2/show/NCT03756298. Accessed 12 May 2020.

  89. 89.

    ClinicalTrials.gov. A study comparing atezolizumab (anti PD-L1 antibody) in combination with adjuvant anthracycline/taxane-based chemotherapy versus chemotherapy alone in patients with operable triple-negative breast cancer (IMpassion030). https://clinicaltrials.gov/ct2/show/NCT03498716. Accessed 12 May 2020.

  90. 90.

    ClinicalTrials.gov. Adjuvant treatment for high-risk triple negative breast cancer patients with the anti-PD-L1 antibody avelumab (A-Brave). https://clinicaltrials.gov/ct2/show/NCT02926196. Accessed 12 May 2020.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Laura L. Michel.

Ethics declarations

Funding

Laura Michel was supported by the Olympia Morata-Program of the Medical Faculty Heidelberg. No external funding was used for the preparation of this article.

Conflict of interest

Laura L. Michel, Alexandra von Au, Athanasios Mavratzas, Katharina Smetanay, Florian Schütz, and Andreas Schneeweiss have no conflicts of interest that are directly relevant to the content of this article.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Michel, L.L., von Au, A., Mavratzas, A. et al. Immune Checkpoint Blockade in Patients with Triple-Negative Breast Cancer. Targ Oncol (2020). https://doi.org/10.1007/s11523-020-00730-0

Download citation