Skip to main content
Log in

New Horizons in the Treatment of Metastatic Pancreatic Cancer: A Review of the Key Biology Features and the Most Recent Advances to Treat Metastatic Pancreatic Cancer

  • Review Article
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

Only a limited number of therapeutic strategies are available for patients diagnosed with pancreatic adenocarcinoma, and disease recurrence and mortality are consequently high. For metastatic disease, two combinations are approved in the first line setting: a triplet with 5-fluoruracil, irinotecan, and oxaliplatin, and the combination of gemcitabine and nab-paclitaxel. In patients who have progressed on gemcitabine, a new nanoliposomal formulation of irinotecan has recently been approved. While these treatments have demonstrated some efficacy, there has been little increase in survival rates for metastatic pancreatic cancer patients. Consequently, there is an urgent need for research and development of new treatments. As there is now a deeper understanding of pancreatic cancer biology, new drugs targeting altered pathways are under research, including agents that target TGF-β, IGF, or NOTCH. Furthermore, taking into account the role of the tumor stroma in this disease, some stroma-targeting drugs are being developed, including PEGPH20, a pegylated recombinant human hyaluronidase. In the immunotherapy field, although checkpoint inhibitors have failed to demonstrate benefit as monotherapies, combinations with other drugs are being investigated, with promising preliminary results. Other strategies under research are targeting tumor metabolism or DNA repair deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014;74(11):2913–21.

    CAS  PubMed  Google Scholar 

  2. Malvezzi M, Bertuccio P, Levi F, La Vecchia C, Negri E. European cancer mortality predictions for the year 2014. Ann Oncol. 2014;25(8):1650–6.

    CAS  PubMed  Google Scholar 

  3. National Cancer Institute. Cancer stat facts: cancer of the pancreas. Surveillance: Epidemiology, and End Results Program. 2017.

  4. Salvia R, Fernández-del Castillo C, Bassi C, Thayer SP, Falconi M, Mantovani W, et al. Main-duct intraductal papillary mucinous neoplasms of the pancreas: clinical predictors of malignancy and long-term survival following resection. Ann Surg. 2004;239(5):678–85.

    PubMed  PubMed Central  Google Scholar 

  5. Neoptolemos JP, Stocken DD, Bassi C, Ghaneh P, Cunningham D, Goldstein D, et al. Adjuvant chemotherapy with fluorouracil plus folinic acid vs gemcitabine following pancreatic cancer resection: a randomized controlled trial. JAMA. 2010;304(10):1073–81.

    CAS  PubMed  Google Scholar 

  6. Oettle H, Neuhaus P, Hochhaus A, Hartmann JT, Gellert K, Ridwelski K, et al. Adjuvant chemotherapy with gemcitabine and long-term outcomes among patients with resected pancreatic cancer: the CONKO-001 randomized trial. JAMA. 2013;310(14):1473–81.

    CAS  PubMed  Google Scholar 

  7. Neoptolemos JP, Palmer DH, Ghaneh P, Psarelli EE, Valle JW, Halloran CM, et al. Comparison of adjuvant gemcitabine and capecitabine with gemcitabine monotherapy in patients with resected pancreatic cancer (ESPAC-4): a multicentre, open-label, randomised, phase 3 trial. Lancet. 2017;389(10073):1011–24.

    CAS  PubMed  Google Scholar 

  8. Von Hoff DD, Ervin T, Arena FP, Chiorean EG, Infante J, Moore M, et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med. 2013;369(18):1691–703.

    Google Scholar 

  9. Conroy T, Desseigne F, Ychou M, Bouché O, Guimbaud R, Bécouarn Y, et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med. 2011;364(19):1817–25.

    CAS  PubMed  Google Scholar 

  10. Moore MJ, Goldstein D, Hamm J, Figer A, Hecht JR, Gallinger S, et al. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada clinical trials group. J Clin Oncol. 2007;25(15):1960–6.

    CAS  PubMed  Google Scholar 

  11. Wang-Gillam A, Li C-P, Bodoky G, Dean A, Shan Y-S, Jameson G, et al. Nanoliposomal irinotecan with fluorouracil and folinic acid in metastatic pancreatic cancer after previous gemcitabine-based therapy (NAPOLI-1): a global, randomised, open-label, phase 3 trial. Lancet. 2016;387(10018):545–57.

    CAS  PubMed  Google Scholar 

  12. Maitra A, Fukushima N, Takaori K, Hruban RH. Precursors to invasive pancreatic cancer. Adv Anat Pathol. 2005;12(2):81–91.

    PubMed  Google Scholar 

  13. Moskaluk CA, Hruban RH. Kern SE. p16 and K-ras gene mutations in the intraductal precursors of human pancreatic adenocarcinoma. Cancer Res. 1997;57(11):2140–3.

    CAS  PubMed  Google Scholar 

  14. Iacobuzio-Donahue CA. Genetic evolution of pancreatic cancer: lessons learnt from the pancreatic cancer genome sequencing project. Gut. 2012;61(7):1085–94.

    CAS  PubMed  Google Scholar 

  15. Jones S, Zhang X, Parsons DW, Lin JC-H, Leary RJ, Angenendt P, et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science. 2008;321(5897):1801–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Cancer Genome Atlas Research Network. Electronic address aadhe, Cancer genome atlas research N. integrated genomic characterization of pancreatic ductal adenocarcinoma. Cancer Cell. 2017;32(2):185–203.e13.

    Google Scholar 

  17. Bailey P, Chang DK, Nones K, Johns AL, Patch A-M, Gingras M-C, et al. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature. 2016;531(7592):47–52.

    CAS  PubMed  Google Scholar 

  18. Waddell N, Pajic M, Patch AM, Chang DK, Kassahn KS, Bailey P, et al. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature. 2015;518(7540):495–501.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Infante JR, Somer BG, Park JO, Li C-P, Scheulen ME, Kasubhai SM, et al. A randomised, double-blind, placebo-controlled trial of trametinib, an oral MEK inhibitor, in combination with gemcitabine for patients with untreated metastatic adenocarcinoma of the pancreas. Eur J Cancer. 2014;50(12):2072–81.

    CAS  PubMed  Google Scholar 

  20. Bodoky G, Timcheva C, Spigel DR, La Stella PJ, Ciuleanu TE, Pover G, et al. A phase II open-label randomized study to assess the efficacy and safety of selumetinib (AZD6244 [ARRY-142886]) versus capecitabine in patients with advanced or metastatic pancreatic cancer who have failed first-line gemcitabine therapy. Investig New Drugs. 2012;30(3):1216–23.

    CAS  Google Scholar 

  21. Mirzoeva OK, Collisson EA, Schaefer PM, Hann B, Hom YK, Ko AH, et al. Subtype-specific MEK-PI3 kinase feedback as a therapeutic target in pancreatic adenocarcinoma. Mol Cancer Ther. 2013;12(10):2213–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Pettazzoni P, Viale A, Shah P, Carugo A, Ying H, Wang H, et al. Genetic events that limit the efficacy of MEK and RTK inhibitor therapies in a mouse model of KRAS-driven pancreatic cancer. Cancer Res. 2015;75(6):1091–101.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Walsh AJ, Castellanos JA, Nagathihalli NS, Merchant NB, Skala MC. Optical imaging of drug-induced metabolism changes in murine and human pancreatic cancer organoids reveals heterogeneous drug response. Pancreas. 2016;45(6):863–9.

    CAS  PubMed  Google Scholar 

  24. Massagué J, Blain SW, Lo RS. TGFβ signaling in growth control, cancer, and heritable disorders. Cell. 2000;103(2):295–309.

    PubMed  Google Scholar 

  25. Akhurst RJ, Hata A. Targeting the TGFβ signalling pathway in disease. Nat Rev Drug Discov. 2012;11(10):790–811.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Ostapoff KT, Cenik BK, Wang M, Ye R, Xu X, Nugent D, et al. Neutralizing murine TGFβR2 promotes a differentiated tumor cell phenotype and inhibits pancreatic cancer metastasis. Cancer Res. 2014;74(18):4996–5007.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Melisi D, Garcia-Carbonero R, Macarulla T, Pezet D, Deplanque G, Fuchs M, et al. A phase II, double-blind study of galunisertib+ gemcitabine (GG) vs gemcitabine+ placebo (GP) in patients (pts) with unresectable pancreatic cancer (PC). J Clin Oncol. 2016;34(15 suppl):4019.

    Google Scholar 

  28. Ranganathan P, Weaver KL, Capobianco AJ. Notch signalling in solid tumours: a little bit of everything but not all the time. Nat Rev Cancer. 2011;11(5):338–51.

    CAS  PubMed  Google Scholar 

  29. Miele L, Golde T, Osborne B. Notch signaling in cancer. Curr Mol Med. 2006;6(8):905–18.

    CAS  PubMed  Google Scholar 

  30. Espinoza I, Pochampally R, Xing F, Watabe K, Miele L. Notch signaling: targeting cancer stem cells and epithelial-to-mesenchymal transition. Onco Targets Ther. 2013;6:1249-59.

    PubMed  PubMed Central  Google Scholar 

  31. Avila JL, Kissil JL. Notch signaling in pancreatic cancer: oncogene or tumor suppressor? Trends Mol Med. 2013;19(5):320–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Hidalgo M, Cooray P, Carrato A, Jameson MB, Parnis F, Jeffery M, et al. A phase 1b study of the anti-cancer stem cell agent demcizumab (DEM) and gemcitabine (GEM)+/−nab-paclitaxel in patients with pancreatic cancer. J Clin Oncol. 2016;34(4 suppl):341.

    Google Scholar 

  33. Smith DC, Eisenberg PD, Manikhas G, Chugh R, Gubens MA, Stagg RJ, et al. A phase I dose escalation and expansion study of the anticancer stem cell agent demcizumab (anti-DLL4) in patients with previously treated solid tumors. Clin Cancer Res. 2014;20(24):6295–303.

    CAS  PubMed  Google Scholar 

  34. Abrams MJ, Rakszawski K, Vasekar M, Passero F, Abbas A, Jia Y, et al. Recent advances in pancreatic cancer: updates and insights from the 2015 annual meeting of the American Society of Clinical Oncology. London: Sage; 2016.

    Google Scholar 

  35. Cubillo Gracian A, Dean A, Muñoz A, Hidalgo M, Pazo-Cid R, Martin M, et al. DYOSEMITE: a 3 arm double-blind randomized phase 2 study of gemcitabine, paclitaxel protein-bound particles for injectable suspension, and placebo (GAP) versus gemcitabine, paclitaxel protein-bound particles for injectable suspension and either 1 or 2 truncated courses of demcizumab (GAD). Ann Oncol. 2017;28(suppl_5):620.

    Google Scholar 

  36. De Jesus-Acosta A, Laheru D, Maitra A, Arcaroli J, Rudek MA, Dasari A, et al. A phase II study of the gamma secretase inhibitor RO4929097 in patients with previously treated metastatic pancreatic adenocarcinoma. Investig New Drugs. 2014;32(4):739–45.

    Google Scholar 

  37. Cook N, Basu B, Smith D-M, Gopinathan A, Evans J, Steward WP, et al. A phase I trial of the γ-secretase inhibitor MK-0752 in combination with gemcitabine in patients with pancreatic ductal adenocarcinoma. Br J Cancer. 2018;118(6):793–801.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, et al. Identification of pancreatic cancer stem cells. Cancer Res. 2007;67(3):1030–7.

    CAS  PubMed  Google Scholar 

  39. Lonardo E, Cioffi M, Sancho P, Crusz S, Heeschen C. Studying pancreatic cancer stem cell characteristics for developing new treatment strategies. Journal of visualized experiments: JoVE. 2015;(100).

  40. Bendell JC, O'Neil BH, Starodub A, Jonker DJ, Halfdanarson TR, Edenfield WJ, et al. Cancer stemness inhibition and chemosensitization: phase 1b/II study of cancer stemness inhibitor napabucasin (BBI-608) with FOLFIRI+/−bevacizumab (Bev) administered to colorectal cancer (CRC) patients (pts). J Clin Oncol. 2017;35(4 suppl):593.

    Google Scholar 

  41. Caldas C, Hahn SA, Da Costa LT, Redston MS, Schutte M, Seymour AB, et al. Frequent somatic mutations and homozygous deletions of the p16 (MTS1) gene in pancreatic adenocarcinoma. Nat Genet. 1994;8(1):27–32.

    CAS  PubMed  Google Scholar 

  42. Maitra A, Kern SE, Hruban RH. Molecular pathogenesis of pancreatic cancer. Best Pract Res Clin Gastroenterol. 2006;20(2):211–26.

    CAS  PubMed  Google Scholar 

  43. Franco J, Witkiewicz AK, Knudsen ES. CDK4/6 inhibitors have potent activity in combination with pathway selective therapeutic agents in models of pancreatic cancer. Oncotarget. 2014;5(15):6512–25.

    PubMed  PubMed Central  Google Scholar 

  44. Leontieva O, Demidenko Z, Blagosklonny M. MEK drives cyclin D1 hyperelevation during geroconversion. Cell Death Differ. 2013;20(9):1241–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Leontieva OV, Blagosklonny MV. CDK4/6-inhibiting drug substitutes for p21 and p16 in senescence: duration of cell cycle arrest and MTOR activity determine geroconversion. Cell Cycle. 2013;12(18):3063–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Bergmann U, Funatomi H, Yokoyama M, Beger HG, Korc M. Insulin-like growth factor I overexpression in human pancreatic cancer: evidence for autocrine and paracrine roles. Cancer Res. 1995;55(10):2007–11.

    CAS  PubMed  Google Scholar 

  47. Hakam A, Fang Q, Karl R, Coppola D. Coexpression of IGF-1R and c-Src proteins in human pancreatic ductal adenocarcinoma. Dig Dis Sci. 2003;48(10):1972–8.

    CAS  PubMed  Google Scholar 

  48. Beltran PJ, Mitchell P, Chung Y-A, Cajulis E, Lu J, Belmontes B, et al. AMG 479, a fully human anti–insulin-like growth factor receptor type I monoclonal antibody, inhibits the growth and survival of pancreatic carcinoma cells. Mol Cancer Ther. 2009;8(5):1095–105.

    CAS  PubMed  Google Scholar 

  49. Rosen LS, Puzanov I, Friberg G, Chan E, Hwang Y, Deng H, et al. Safety and pharmacokinetics of ganitumab (AMG 479) combined with sorafenib, panitumumab, erlotinib, or gemcitabine in patients with advanced solid tumors. Clin Cancer Res. 2012;18(12):3414–27.

    CAS  PubMed  Google Scholar 

  50. Kindler H, Richards D, Garbo L, Garon E, Stephenson J Jr, Rocha-Lima C, et al. A randomized, placebo-controlled phase 2 study of ganitumab (AMG 479) or conatumumab (AMG 655) in combination with gemcitabine in patients with metastatic pancreatic cancer. Ann Oncol. 2012;23(11):2834–42.

    CAS  PubMed  Google Scholar 

  51. Fuchs CS, Azevedo S, Okusaka T, Van Laethem J-L, Lipton L, Riess H, et al. A phase 3 randomized, double-blind, placebo-controlled trial of ganitumab or placebo in combination with gemcitabine as first-line therapy for metastatic adenocarcinoma of the pancreas: the GAMMA trial. Ann Oncol. 2015;26(5):921–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Pace E, Adams S, Camblin A, Curley M, Rimkunas V, Nie L, et al. Effect of MM-141 on gemcitabine and nab-paclitaxel potentiation in preclinical models of pancreatic cancer through induction of IGF-1R and ErbB3 degradation. J Clin Oncol. 2015;33(3 suppl):289.

    Google Scholar 

  53. Vaishnavi A, Le AT, Doebele RC. TRKing down an old oncogene in a new era of targeted therapy. Cancer Discov. 2015;5(1):25–34.

    CAS  PubMed  Google Scholar 

  54. Vaishnavi A, Capelletti M, Le AT, Kako S, Butaney M, Ercan D, et al. Oncogenic and drug-sensitive NTRK1 rearrangements in lung cancer. Nat Med. 2013;19(11):1469–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Tognon C, Garnett M, Kenward E, Kay R, Morrison K, Sorensen PH. The chimeric protein tyrosine kinase ETV6-NTRK3 requires both Ras-Erk1/2 and PI3-kinase-Akt signaling for fibroblast transformation. Cancer Res. 2001;61(24):8909–16.

    CAS  PubMed  Google Scholar 

  56. Pulciani S, Santos E, Lauver AV, Long LK, Aaronson SA, Barbacid M. Oncogenes in solid human tumours. Nature. 1982;300(5892):539–42.

    CAS  PubMed  Google Scholar 

  57. Drilon A, Laetsch TW, Kummar S, DuBois SG, Lassen UN, Demetri GD, et al. Efficacy of larotrectinib in TRK fusion–positive cancers in adults and children. N Engl J Med. 2018;378(8):731–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Drilon A, Nagasubramanian R, Blake JF, Ku N, Tuch BB, Ebata K, et al. A next-generation TRK kinase inhibitor overcomes acquired resistance to prior TRK kinase inhibition in patients with TRK fusion–positive solid tumors. Cancer Discov. 2017;7(9):963–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Hemminki A, Markie D, Tomlinson I, Avizienyte E, Roth S, Loukola A, et al. A serine/threonine kinase gene defective in Peutz–Jeghers syndrome. Nature. 1998;391(6663):184–7.

    CAS  PubMed  Google Scholar 

  60. Jenne DE, Reomann H, Nezu J-i, Friedel W, Loff S, Jeschke R, et al. Peutz-Jeghers syndrome is caused by mutations in a novel serine threoninekinase. Nat Genet. 1998;18(1):38–43.

    CAS  PubMed  Google Scholar 

  61. Tiainen M, Vaahtomeri K, Ylikorkala A, Mäkelä TP. Growth arrest by the LKB1 tumor suppressor: induction of p21WAF1/CIP1. Hum Mol Genet. 2002;11(13):1497–504.

  62. Klümpen H-J, Queiroz KC, Spek CA, van Noesel CJ, Brink HC, de Leng WW, et al. mTOR inhibitor treatment of pancreatic cancer in a patient with Peutz-Jeghers syndrome. J Clin Oncol. 2011;29(6):e150–3.

    PubMed  Google Scholar 

  63. Wolpin BM, Hezel AF, Abrams T, Blaszkowsky LS, Meyerhardt JA, Chan JA, et al. Oral mTOR inhibitor everolimus in patients with gemcitabine-refractory metastatic pancreatic cancer. J Clin Oncol. 2009;27(2):193–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Kuwada SK. Burt R. A rationale for mTOR inhibitors as chemoprevention agents in Peutz-Jeghers syndrome. Familial Cancer. 2011;10(3):469–72.

    CAS  PubMed  Google Scholar 

  65. Iqbal J, Ragone A, Lubinski J, Lynch H, Moller P, Ghadirian P, et al. The incidence of pancreatic cancer in BRCA1 and BRCA2 mutation carriers. Br J Cancer. 2012;107(12):2005–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Couch FJ, Johnson MR, Rabe KG, Brune K, de Andrade M, Goggins M, et al. The prevalence of BRCA2 mutations in familial pancreatic cancer. Cancer Epidemiol Biomark Prev. 2007;16(2):342–6.

    CAS  Google Scholar 

  67. Goggins M, Schutte M, Lu J, Moskaluk CA, Weinstein CL, Petersen GM, et al. Germline BRCA2 gene mutations in patients with apparently sporadic pancreatic carcinomas. Cancer Res. 1996;56(23):5360–4.

    CAS  PubMed  Google Scholar 

  68. Holter S, Borgida A, Dodd A, Grant R, Semotiuk K, Hedley D, et al. Germline BRCA mutations in a large clinic-based cohort of patients with pancreatic adenocarcinoma. J Clin Oncol. 2015;33(28):3124–9.

    CAS  PubMed  Google Scholar 

  69. Shindo K, Yu J, Suenaga M, Fesharakizadeh S, Cho C, Macgregor-Das A, et al. Deleterious germline mutations in patients with apparently sporadic pancreatic adenocarcinoma. J Clin Oncol. 2017;35(30):3382–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Golan T, Kanji Z, Epelbaum R, Devaud N, Dagan E, Holter S, et al. Overall survival and clinical characteristics of pancreatic cancer in BRCA mutation carriers. Br J Cancer. 2014;111(6):1132–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Kaufman B, Shapira-Frommer R, Schmutzler RK, Audeh MW, Friedlander M, Balmaña J, et al. Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. J Clin Oncol. 2015;33(3):244–50.

    CAS  PubMed  Google Scholar 

  72. Lowery MA, Kelsen DP, Capanu M, Smith SC, Lee JW, Stadler ZK, et al. Phase II trial of veliparib in patients with previously treated BRCA-mutated pancreas ductal adenocarcinoma. Eur J Cancer. 2018;89:19–26.

    CAS  PubMed  Google Scholar 

  73. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, et al. Signatures of mutational processes in human cancer. Nature. 2013;500(7463):415–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Yarchoan M, Myzak MC, Johnson BA 3rd, De Jesus-Acosta A, Le DT, Jaffee EM, et al. Olaparib in combination with irinotecan, cisplatin, and mitomycin C in patients with advanced pancreatic cancer. Oncotarget. 2017;8(27):44073–81.

    PubMed  PubMed Central  Google Scholar 

  75. Provenzano PP, Cuevas C, Chang AE, Goel VK, Von Hoff DD, Hingorani SR. Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell. 2012;21(3):418–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Rhim AD, Oberstein PE, Thomas DH, Mirek ET, Palermo CF, Sastra SA, et al. Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell. 2014;25(6):735–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Özdemir BC, Pentcheva-Hoang T, Carstens JL, Zheng X, Wu C-C, Simpson TR, et al. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell. 2014;25(6):719–34.

    PubMed  PubMed Central  Google Scholar 

  78. Masso-Valles D, Jauset T, Serrano E, Sodir NM, Pedersen K, Affara NI, et al. Ibrutinib exerts potent antifibrotic and antitumor activities in mouse models of pancreatic adenocarcinoma. Cancer Res. 2015;75(8):1675–81.

    CAS  PubMed  Google Scholar 

  79. Gunderson AJ, Kaneda MM, Tsujikawa T, Nguyen AV, Affara NI, Ruffell B, et al. Bruton tyrosine kinase-dependent immune cell cross-talk drives pancreas Cancer. Cancer Discov. 2016;6(3):270–85.

    CAS  PubMed  Google Scholar 

  80. Tempero MA, Coussens LM, Fong L, Manges R, Singh P, Li Y, et al. A randomized, double-blind, placebo-controlled study of ibrutinib, a Bruton tyrosine kinase inhibitor, with nab-paclitaxel and gemcitabine in the first-line treatment of patients with metastatic pancreatic adenocarcinoma (RESOLVE). J Clin Oncol. 2016;34(15_suppl):TPS2601.

    Google Scholar 

  81. Hingorani SR, Zheng L, Bullock AJ, Seery TE, Harris WP, Sigal DS, et al. HALO 202: randomized phase II study of PEGPH20 plus nab-paclitaxel/gemcitabine versus nab-paclitaxel/gemcitabine in patients with untreated, metastatic pancreatic ductal adenocarcinoma. J Clin Oncol. 2018;36(4):359–66.

    CAS  PubMed  Google Scholar 

  82. Ramanathan RK, McDonough S, Philip PA, Hingorani SR, Lacy J, Kortmansky JS, et al. A phase IB/II randomized study of mFOLFIRINOX (mFFOX)+ pegylated recombinant human hyaluronidase (PEGPH20) versus mFFOX alone in patients with good performance status metastatic pancreatic adenocarcinoma (mPC): SWOG S1313 (NCT# 01959139). J Clin Oncol. 2018;36(4 suppl):208.

    Google Scholar 

  83. Wenger C, Ellenrieder V, Alber B, Lacher U, Menke A, Hameister H, et al. Expression and differential regulation of connective tissue growth factor in pancreatic cancer cells. Oncogene. 1999;18(4):1073–80.

    CAS  PubMed  Google Scholar 

  84. Neesse A, Frese KK, Bapiro TE, Nakagawa T, Sternlicht MD, Seeley TW, et al. CTGF antagonism with mAb FG-3019 enhances chemotherapy response without increasing drug delivery in murine ductal pancreas cancer. Proc Natl Acad Sci U S A. 2013;110(30):12325–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Dornhöfer N, Spong S, Bennewith K, Salim A, Klaus S, Kambham N, et al. Connective tissue growth factor–specific monoclonal antibody therapy inhibits pancreatic tumor growth and metastasis. Cancer Res. 2006;66(11):5816–27.

    PubMed  Google Scholar 

  86. Carrier E, Picozzi V, Pishvaian M, Mody K, Winter J, Glaspy J, et al. Anti-CTGF human recombinant monoclonal antibody pamrevlumab increases resectability and resection rate when combined with gemcitabine/nab-paclitaxel in the treatment of locally advanced pancreatic cancer patients. Ann Oncol. 2017;28(suppl_5):1734PD.

    Google Scholar 

  87. Sherman MH, Yu RT, Engle DD, Ding N, Atkins AR, Tiriac H, et al. Vitamin D receptor-mediated stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy. Cell. 2014;159(1):80–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Thayer SP, di Magliano MP, Heiser PW, Nielsen CM, Roberts DJ, Lauwers GY, et al. Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature. 2003;425(6960):851–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Ko AH, LoConte N, Tempero MA, Walker EJ, Kate Kelley R, Lewis S, et al. A phase I study of FOLFIRINOX plus IPI-926, a hedgehog pathway inhibitor, for advanced pancreatic adenocarcinoma. Pancreas. 2016;45(3):370–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Catenacci DV, Junttila MR, Karrison T, Bahary N, Horiba MN, Nattam SR, et al. Randomized phase Ib/II study of gemcitabine plus placebo or Vismodegib, a hedgehog pathway inhibitor, in patients with metastatic pancreatic Cancer. J Clin Oncol. 2015;33(36):4284–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Johnson BA, Yarchoan M, Lee V, Laheru DA, Jaffee EM. Strategies for increasing pancreatic tumor immunogenicity. Clin Cancer Res. 2017;23(7):1656–69.

    PubMed  PubMed Central  Google Scholar 

  92. Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science. 2017;357(6349):409–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Bahary N, Garrido-Laguna I, Cinar P, O'Rourke MA, Somer BG, Nyak-Kapoor A, et al. Phase 2 trial of the indoleamine 2, 3-dioxygenase pathway (IDO) inhibitor indoximod plus gemcitabine/nab-paclitaxel for the treatment of metastatic pancreas cancer: interim analysis. J Clin Oncol. 2016;34(15 suppl):3020.

    Google Scholar 

  94. Melisi D, Guba SC, Karasarides M, Andre V. Phase 1b dose-escalation and cohort-expansion study of the safety, tolerability, and efficacy of a novel transforming growth factor-β receptor I kinase inhibitor (galunisertib [G]) administered in combination with the anti-PD-L1 antibody (durvalumab [D]) in recurrent or refractory metastatic pancreatic cancer. J Clin Oncol. 2017;35(4_suppl):TPS501.

    Google Scholar 

  95. Nywening TM, Wang-Gillam A, Sanford DE, Belt BA, Panni RZ, Cusworth BM, et al. Targeting tumour-associated macrophages with CCR2 inhibition in combination with FOLFIRINOX in patients with borderline resectable and locally advanced pancreatic cancer: a single-Centre, open-label, dose-finding, non-randomised, phase 1b trial. Lancet Oncol. 2016;17(5):651–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Wainberg Z, Piha-Paul S, Luke J. First in human phase 1 dose escalation and expansion of a novel combination, anti-CSF-1 receptor (caboralizumab) plus anti-PD-1 (nivolumab) in patients with advanced solid tumors. Proc SITC. 2017:O42.

  97. Beatty GL, Torigian DA, Chiorean EG, Saboury B, Brothers A, Alavi A, et al. A phase I study of an agonist CD40 monoclonal antibody (CP-870,893) in combination with gemcitabine in patients with advanced pancreatic ductal adenocarcinoma. Clin Cancer Res. 2013;19(22):6286–95.

    CAS  PubMed  Google Scholar 

  98. Brahmer JR, Tykodi SS, Chow LQ, Hwu W-J, Topalian SL, Hwu P, et al. Safety and activity of anti–PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366(26):2455–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Hu ZI, Shia J, Stadler ZK, Varghese AM, Capanu M, Salo-Mullen E, et al. Evaluating mismatch repair deficiency in pancreatic adenocarcinoma: challenges and recommendations. Clin Cancer Res. 2018;15;24(6):1326–36

  100. Nakata B, Wang YQ, Yashiro M, Nishioka N, Tanaka H, Ohira M, et al. Prognostic value of microsatellite instability in resectable pancreatic cancer. Clin Cancer Res. 2002;8(8):2536–40.

    CAS  PubMed  Google Scholar 

  101. Witkiewicz A, Williams TK, Cozzitorto J, Durkan B, Showalter SL, Yeo CJ, et al. Expression of indoleamine 2,3-dioxygenase in metastatic pancreatic ductal adenocarcinoma recruits regulatory T cells to avoid immune detection. J Am Coll Surg. 2008;206(5):849–54.

    PubMed  Google Scholar 

  102. Weinberg SE, Chandel NS. Targeting mitochondria metabolism for cancer therapy. Nat Chem Biol. 2015;11(1):9–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Zachar Z, Marecek J, Maturo C, Gupta S, Stuart SD, Howell K, et al. Non-redox-active lipoate derivates disrupt cancer cell mitochondrial metabolism and are potent anticancer agents in vivo. J Mol Med. 2011;89(11):1137–48.

    CAS  PubMed  Google Scholar 

  104. Pardee TS, Lee K, Luddy J, Maturo C, Rodriguez R, Isom S, et al. A phase I study of the first-in-class antimitochondrial metabolism agent, CPI-613, in patients with advanced hematologic malignancies. Clin Cancer Res. 2014;20(20):5255–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Alistar A, Morris BB, Desnoyer R, Klepin HD, Hosseinzadeh K, Clark C, et al. Safety and tolerability of the first-in-class agent CPI-613 in combination with modified FOLFIRINOX in patients with metastatic pancreatic cancer: a single-Centre, open-label, dose-escalation, phase 1 trial. Lancet Oncol. 2017;18(6):770–8.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helena Verdaguer.

Ethics declarations

Funding

No external funding was used in the preparation of this manuscript.

Conflict of Interest

Teresa Macarulla has received research grants from Astrazeneca and Celgene, honoraria from Genzyme, Sanofi, Shire, Tesaro, Celgene, Roche, Baxalta and QED Therapeutic, and travel grants from Merck, H3 Biomedicine, Bayer and Sanofi. Helena Verdaguer has received honoraria from Celgene and Ipsen, and travel grants from Amgen, Celgene and Ipsen. Alvaro Arroyo declares that he does not have any conflicts of interest that might be relevant to the contents of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verdaguer, H., Arroyo, A. & Macarulla, T. New Horizons in the Treatment of Metastatic Pancreatic Cancer: A Review of the Key Biology Features and the Most Recent Advances to Treat Metastatic Pancreatic Cancer. Targ Oncol 13, 691–704 (2018). https://doi.org/10.1007/s11523-018-0609-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-018-0609-7

Navigation