Targeted Oncology

, Volume 13, Issue 4, pp 437–446 | Cite as

The Role of Autophagy in the Resistance to BRAF Inhibition in BRAF-Mutated Melanoma

  • Xiao Liu
  • Jinfeng Wu
  • Haihong Qin
  • Jinhua Xu
Review Article


Malignant melanoma is the most aggressive and notorious skin cancer, and metastatic disease is associated with very poor long-term survival outcomes. Although metastatic melanoma patients with oncogenic mutations in the BRAF gene initially respond well to the treatment with specific BRAF inhibitors, most of them will eventually develop resistance to this targeted therapy. As a highly conserved catabolic process, autophagy is responsible for the maintenance of cellular homeostasis and cell survival, and is involved in multiple diseases, including cancer. Recent study results have indicated that autophagy might play a decisive role in the resistance to BRAF inhibitors in BRAF-mutated melanomas. In this review, we will discuss how autophagy is up-regulated by BRAF inhibitors, and how autophagy induces the resistance to these agents.



No external funding was used in the preparation of this manuscript.

Compliance with Ethical Standards

Conflict of Interest

Xiao Liu, Jinfeng Wu, Haihong Qin, and Jinhua Xu declare that they have no conflicts of interest that might be relevant to the contents of this manuscript.


  1. 1.
    Meng XX, Xu HX, Yao M, et al. Implication of unfolded protein response and autophagy in the treatment of BRAF inhibitor resistant melanoma. Anti Cancer Agents Med Chem. 2016;16(3):291–8.CrossRefGoogle Scholar
  2. 2.
    Spagnolo F, Ghiorzo P, Orgiano L, et al. BRAF-mutant melanoma: treatment approaches, resistance mechanisms, and diagnostic strategies. Onco Targets Ther. 2015;8:157–68.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Rastrelli M, Tropea S, Rossi CR, et al. Melanoma: epidemiology, risk factors, pathogenesis, diagnosis and classification. In Vivo. 2014;28(6):1005–11.PubMedGoogle Scholar
  4. 4.
    Luke JJ, Flaherty KT, Ribas A, et al. Targeted agents and immunotherapies: optimizing outcomes in melanoma. Nat Rev Clin Oncol. 2017;14(8):463–82.PubMedCrossRefGoogle Scholar
  5. 5.
    Atkins MB, Lotze MT, Dutcher JP, et al. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol. 1999;17(7):2105–16.PubMedCrossRefGoogle Scholar
  6. 6.
    Schiller JH, Pugh M, Kirkwood JM, et al. Eastern cooperative group trial of interferon gamma in metastatic melanoma: an innovative study design. Clin Cancer Res. 1996;2(1):29–36.PubMedGoogle Scholar
  7. 7.
    Parker BS, Rautela J, Hertzog PJ. Antitumour actions of interferons: implications for cancer therapy. Nat Rev Cancer. 2016;16(3):131–44.PubMedCrossRefGoogle Scholar
  8. 8.
    Rozeman EA, Dekker T, Haanen J, et al. Advanced melanoma: current treatment options, biomarkers, and future perspectives. Am J Clin Dermatol. 2017;
  9. 9.
    Olszanski AJ, Hoffner BW. Evolving paradigms in melanoma therapy. J Adv Pract Oncol. 2016;7(3):291–4.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Bradish JR, Montironi R, Lopez-Beltran A, et al. Towards personalized therapy for patients with malignant melanoma: molecular insights into the biology of BRAF mutations. Future Oncol. 2013;9(2):245–53.PubMedCrossRefGoogle Scholar
  11. 11.
    Ossio R, Roldan-Marin R, Martinez-Said H, et al. Melanoma: a global perspective. Nat Rev Cancer. 2017;17(7):393–4.PubMedCrossRefGoogle Scholar
  12. 12.
    Schadendorf D, Fisher DE, Garbe C, et al. Melanoma. Nat Rev Dis Primers. 2015;1:15003.PubMedCrossRefGoogle Scholar
  13. 13.
    Su MY, Fisher DE. Immunotherapy in the precision medicine era: melanoma and beyond. PLoS Med. 2016;13(12):e1002196.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Merlino G, Herlyn M, Fisher DE, et al. The state of melanoma: challenges and opportunities. Pigment Cell Melanoma Res. 2016;29(4):404–16.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Lawrence MS, Stojanov P, Polak P, et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature. 2013;499(7457):214–8.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Chen SH, Gong X, Zhang Y, et al. RAF inhibitor LY3009120 sensitizes RAS or BRAF mutant cancer to CDK4/6 inhibition by abemaciclib via superior inhibition of phospho-RB and suppression of cyclin D1. Oncogene. 2018;37(6):821–32.PubMedCrossRefGoogle Scholar
  17. 17.
    Colombino M, Capone M, Lissia A, et al. BRAF/NRAS mutation frequencies among primary tumors and metastases in patients with melanoma. J Clin Oncol. 2012;30(20):2522–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Curtin JA, Fridlyand J, Kageshita T, et al. Distinct sets of genetic alterations in melanoma. N Engl J Med. 2005;353(20):2135–47.PubMedCrossRefGoogle Scholar
  19. 19.
    Hayward NK, Wilmott JS, Waddell N, et al. Whole-genome landscapes of major melanoma subtypes. Nature. 2017;545(7653):175–80.PubMedCrossRefGoogle Scholar
  20. 20.
    Bradish JR, Cheng L. Molecular pathology of malignant melanoma: changing the clinical practice paradigm toward a personalized approach. Hum Pathol. 2014;45(7):1315–26.PubMedCrossRefGoogle Scholar
  21. 21.
    Cheng L, Lopez-Beltran A, Massari F, et al. Molecular testing for BRAF mutations to inform melanoma treatment decisions: a move toward precision medicine. Mod Pathol. 2018;31(1):24–38.PubMedCrossRefGoogle Scholar
  22. 22.
    Burotto M, Chiou VL, Lee JM, et al. The MAPK pathway across different malignancies: a new perspective. Cancer. 2014;120(22):3446–56.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Arozarena I, Wellbrock C. Overcoming resistance to BRAF inhibitors. Ann Transl Med. 2017;5(19):387.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Bollag G, Hirth P, Tsai J, et al. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature. 2010;467(7315):596–9.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Waizenegger IC, Baum A, Steurer S, et al. A novel RAF kinase inhibitor with DFG-out-binding mode: high efficacy in BRAF-mutant tumor xenograft models in the absence of normal tissue Hyperproliferation. Mol Cancer Ther. 2016;15(3):354–65.PubMedCrossRefGoogle Scholar
  26. 26.
    Dean L. Vemurafenib therapy and BRAF and NRAS genotype. In: Pratt V, McLeod H, Dean L, et al., editors. Medical genetics summaries [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2012.Google Scholar
  27. 27.
    Flaherty KT, Puzanov I, Kim KB, et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med. 2010;363(9):809–19.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Sosman JA, Kim KB, Schuchter L, et al. Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N Engl J Med. 2012;366(8):707–14.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    McArthur GA, Chapman PB, Robert C, et al. Safety and efficacy of vemurafenib in BRAF(V600E) and BRAF(V600K) mutation-positive melanoma (BRIM-3): extended follow-up of a phase 3, randomised, open-label study. Lancet Oncol. 2014;15(3):323–32.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Banzi M, De Blasio S, Lallas A, et al. Dabrafenib: a new opportunity for the treatment of BRAF V600-positive melanoma. Onco Targets Ther. 2016;9:2725–33.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Hauschild A, Grob JJ, Demidov LV, et al. Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet. 2012;380(9839):358–65.PubMedCrossRefGoogle Scholar
  32. 32.
    Long GV, Weber JS, Infante JR, et al. Overall survival and durable responses in patients with BRAF V600-mutant metastatic melanoma receiving Dabrafenib combined with Trametinib. J Clin Oncol. 2016;34(8):871–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Turajlic S, Furney SJ, Stamp G, et al. Whole-genome sequencing reveals complex mechanisms of intrinsic resistance to BRAF inhibition. Ann Oncol. 2014;25(5):959–67.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Shi H, Hugo W, Kong X, et al. Acquired resistance and clonal evolution in melanoma during BRAF inhibitor therapy. Cancer Discov. 2014;4(1):80–93.PubMedCrossRefGoogle Scholar
  35. 35.
    Van Allen EM, Wagle N, Sucker A, et al. The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma. Cancer Discov. 2014;4(1):94–109.PubMedCrossRefGoogle Scholar
  36. 36.
    Nazarian R, Shi H, Wang Q, et al. Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature. 2010;468(7326):973–7.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Whittaker SR, Theurillat JP, Van Allen E, et al. A genome-scale RNA interference screen implicates NF1 loss in resistance to RAF inhibition. Cancer Discov. 2013;3(3):350–62.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Girotti MR, Pedersen M, Sanchez-Laorden B, et al. Inhibiting EGF receptor or SRC family kinase signaling overcomes BRAF inhibitor resistance in melanoma. Cancer Discov. 2013;3(2):158–67.PubMedCrossRefGoogle Scholar
  39. 39.
    Villanueva J, Vultur A, Lee JT, et al. Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. Cancer Cell. 2010;18(6):683–95.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Ascierto PA, McArthur GA, Dreno B, et al. Cobimetinib combined with vemurafenib in advanced BRAF(V600)-mutant melanoma (coBRIM): updated efficacy results from a randomised, double-blind, phase 3 trial. Lancet Oncol. 2016;17(9):1248–60.PubMedCrossRefGoogle Scholar
  41. 41.
    Long GV, Flaherty KT, Stroyakovskiy D, et al. Dabrafenib plus trametinib versus dabrafenib monotherapy in patients with metastatic BRAF V600E/K-mutant melanoma: long-term survival and safety analysis of a phase 3 study. Ann Oncol. 2017;28(7):1631–9.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Brighton HE, Angus SP, Bo T, et al. New mechanisms of resistance to MEK inhibitors in melanoma revealed by intravital imaging. Cancer Res. 2018;78(2):542–57.PubMedCrossRefGoogle Scholar
  43. 43.
    Shi H, Hong A, Kong X, et al. A novel AKT1 mutant amplifies an adaptive melanoma response to BRAF inhibition. Cancer Discov. 2014;4(1):69–79.PubMedCrossRefGoogle Scholar
  44. 44.
    Muller J, Krijgsman O, Tsoi J, et al. Low MITF/AXL ratio predicts early resistance to multiple targeted drugs in melanoma. Nat Commun. 2014;5:5712.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Smith MP, Brunton H, Rowling EJ, et al. Inhibiting drivers of non-mutational drug tolerance is a salvage strategy for targeted melanoma therapy. Cancer Cell. 2016;29(3):270–84.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Straussman R, Morikawa T, Shee K, et al. Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature. 2012;487(7408):500–4.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Hirata E, Girotti MR, Viros A, et al. Intravital imaging reveals how BRAF inhibition generates drug-tolerant microenvironments with high integrin beta1/FAK signaling. Cancer Cell. 2015;27(4):574–88.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Smith MP, Sanchez-Laorden B, O'Brien K, et al. The immune microenvironment confers resistance to MAPK pathway inhibitors through macrophage-derived TNFalpha. Cancer Discov. 2014;4(10):1214–29.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Wang T, Xiao M, Ge Y, et al. BRAF inhibition stimulates melanoma-associated macrophages to drive tumor growth. Clin Cancer Res. 2015;21(7):1652–64.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Klionsky DJ. Autophagy: from phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol. 2007;8(11):931–7.PubMedCrossRefGoogle Scholar
  51. 51.
    Mizushima N, Klionsky DJ. Protein turnover via autophagy: implications for metabolism. Annu Rev Nutr. 2007;27:19–40.PubMedCrossRefGoogle Scholar
  52. 52.
    Yu L, Chen Y, Tooze SA. Autophagy pathway: cellular and molecular mechanisms. Autophagy 2017:0.Google Scholar
  53. 53.
    Gallagher LE, Chan EY. Early signalling events of autophagy. Essays Biochem. 2013;55:1–15.PubMedCrossRefGoogle Scholar
  54. 54.
    Axe EL, Walker SA, Manifava M, et al. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol. 2008;182(4):685–701.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Ganley IG, Lam DH, Wang J, et al. ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem. 2009;284(18):12297–305.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Itakura E, Kishi C, Inoue K, et al. Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol Biol Cell. 2008;19(12):5360–72.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Zhong Y, Wang QJ, Li X, et al. Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nat Cell Biol. 2009;11(4):468–76.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Sun Q, Fan W, Chen K, et al. Identification of Barkor as a mammalian autophagy-specific factor for Beclin 1 and class III phosphatidylinositol 3-kinase. Proc Natl Acad Sci U S A. 2008;105(49):19211–6.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Chan EY, Longatti A, McKnight NC, et al. Kinase-inactivated ULK proteins inhibit autophagy via their conserved C-terminal domains using an Atg13-independent mechanism. Mol Cell Biol. 2009;29(1):157–71.PubMedCrossRefGoogle Scholar
  60. 60.
    Suzuki SW, Yamamoto H, Oikawa Y, et al. Atg13 HORMA domain recruits Atg9 vesicles during autophagosome formation. Proc Natl Acad Sci U S A. 2015;112(11):3350–5.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Lamb CA, Nuhlen S, Judith D, et al. TBC1D14 regulates autophagy via the TRAPP complex and ATG9 traffic. EMBO J. 2016;35(3):281–301.PubMedCrossRefGoogle Scholar
  62. 62.
    Webster CP, Smith EF, Bauer CS, et al. The C9orf72 protein interacts with Rab1a and the ULK1 complex to regulate initiation of autophagy. EMBO J. 2016;35(15):1656–76.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Lin MG, Hurley JH. Structure and function of the ULK1 complex in autophagy. Curr Opin Cell Biol. 2016;39:61–8.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Mao K, Klionsky DJ. AMPK activates autophagy by phosphorylating ULK1. Circ Res. 2011;108(7):787–8.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Kim J, Kundu M, Viollet B, et al. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 2011;13(2):132–41.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Jung CH, Jun CB, Ro SH, et al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell. 2009;20(7):1992–2003.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Backer JM. The intricate regulation and complex functions of the class III phosphoinositide 3-kinase Vps34. Biochem J. 2016;473(15):2251–71.PubMedCrossRefGoogle Scholar
  68. 68.
    Lamb CA, Yoshimori T, Tooze SA. The autophagosome: origins unknown, biogenesis complex. Nat Rev Mol Cell Biol. 2013;14(12):759–74.PubMedCrossRefGoogle Scholar
  69. 69.
    Fimia GM, Di Bartolomeo S, Piacentini M, et al. Unleashing the Ambra1-Beclin 1 complex from dynein chains: Ulk1 sets Ambra1 free to induce autophagy. Autophagy. 2011;7(1):115–7.PubMedCrossRefGoogle Scholar
  70. 70.
    Hurley JH, Young LN. Mechanisms of autophagy initiation. Annu Rev Biochem. 2017;86:225–44.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Lang T, Reiche S, Straub M, et al. Autophagy and the cvt pathway both depend on AUT9. J Bacteriol. 2000;182(8):2125–33.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Yamamoto H, Kakuta S, Watanabe TM, et al. Atg9 vesicles are an important membrane source during early steps of autophagosome formation. J Cell Biol. 2012;198(2):219–33.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Jin M, Klionsky DJ. Transcriptional regulation of ATG9 by the Pho23-Rpd3 complex modulates the frequency of autophagosome formation. Autophagy. 2014;10(9):1681–2.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Hanada T, Noda NN, Satomi Y, et al. The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J Biol Chem. 2007;282(52):37298–302.PubMedCrossRefGoogle Scholar
  75. 75.
    Fujita N, Itoh T, Omori H, et al. The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. Mol Biol Cell. 2008;19(5):2092–100.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Pierdominici M, Vomero M, Barbati C, et al. Role of autophagy in immunity and autoimmunity, with a special focus on systemic lupus erythematosus. FASEB J. 2012;26(4):1400–12.PubMedCrossRefGoogle Scholar
  77. 77.
    Kim SE, Park HJ, Jeong HK, et al. Autophagy sustains the survival of human pancreatic cancer PANC-1 cells under extreme nutrient deprivation conditions. Biochem Biophys Res Commun. 2015;463(3):205–10.PubMedCrossRefGoogle Scholar
  78. 78.
    Noman MZ, Berchem G, Janji B. Targeting autophagy blocks melanoma growth by bringing natural killer cells to the tumor battlefield. Autophagy. 2018:1–3.Google Scholar
  79. 79.
    Rangwala R, Chang YC, Hu J, et al. Combined MTOR and autophagy inhibition: phase I trial of hydroxychloroquine and temsirolimus in patients with advanced solid tumors and melanoma. Autophagy. 2014;10(8):1391–402.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Saglar E, Unlu S, Babalioglu I, et al. Assessment of ER stress and autophagy induced by ionizing radiation in both radiotherapy patients and ex vivo irradiated samples. J Biochem Mol Toxicol. 2014;28(9):413–7.PubMedCrossRefGoogle Scholar
  81. 81.
    Mukubou H, Tsujimura T, Sasaki R, et al. The role of autophagy in the treatment of pancreatic cancer with gemcitabine and ionizing radiation. Int J Oncol. 2010;37(4):821–8.PubMedGoogle Scholar
  82. 82.
    Galluzzi L, Pietrocola F, Bravo-San PJ, et al. Autophagy in malignant transformation and cancer progression. EMBO J. 2015;34(7):856–80.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Menzies FM, Fleming A, Rubinsztein DC. Compromised autophagy and neurodegenerative diseases. Nat Rev Neurosci. 2015;16(6):345–57.PubMedCrossRefGoogle Scholar
  84. 84.
    Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues. Cell. 2011;147(4):728–41.PubMedCrossRefGoogle Scholar
  85. 85.
    Gomes LC, Dikic I. Autophagy in antimicrobial immunity. Mol Cell. 2014;54(2):224–33.PubMedCrossRefGoogle Scholar
  86. 86.
    Ji C, Zhang Z, Chen L, et al. Endoplasmic reticulum stress-induced autophagy determines the susceptibility of melanoma cells to dabrafenib. Drug Des Devel Ther. 2016;10:2491–8.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Martin S, Dudek-Peric AM, Garg AD, et al. An autophagy-driven pathway of ATP secretion supports the aggressive phenotype of BRAF(V600E) inhibitor-resistant metastatic melanoma cells. Autophagy. 2017;13(9):1512–27.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Ma XH, Piao SF, Dey S, et al. Targeting ER stress-induced autophagy overcomes BRAF inhibitor resistance in melanoma. J Clin Invest. 2014;124(3):1406–17.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Martin S, Dudek-Peric AM, Maes H, et al. Concurrent MEK and autophagy inhibition is required to restore cell death associated danger-signalling in Vemurafenib-resistant melanoma cells. Biochem Pharmacol. 2015;93(3):290–304.PubMedCrossRefGoogle Scholar
  90. 90.
    Li Z, Jiang K, Zhu X, et al. Encorafenib (LGX818), a potent BRAF inhibitor, induces senescence accompanied by autophagy in BRAFV600E melanoma cells. Cancer Lett. 2016;370(2):332–44.PubMedCrossRefGoogle Scholar
  91. 91.
    Goodall ML, Wang T, Martin KR, et al. Development of potent autophagy inhibitors that sensitize oncogenic BRAF V600E mutant melanoma tumor cells to vemurafenib. Autophagy. 2014;10(6):1120–36.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Wang W, Kang H, Zhao Y, et al. Targeting autophagy sensitizes BRAF-mutant thyroid Cancer to Vemurafenib. J Clin Endocrinol Metab. 2017;102(2):634–43.PubMedGoogle Scholar
  93. 93.
    Goulielmaki M, Koustas E, Moysidou E, et al. BRAF associated autophagy exploitation: BRAF and autophagy inhibitors synergise to efficiently overcome resistance of BRAF mutant colorectal cancer cells. Oncotarget. 2016;7(8):9188–221.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Mulcahy LJ, Zahedi S, Griesinger AM, et al. Autophagy inhibition overcomes multiple mechanisms of resistance to BRAF inhibition in brain tumors. eLife. 2017;6:e19671.CrossRefGoogle Scholar
  95. 95.
    Ge L, Zhang M, Schekman R. Phosphatidylinositol 3-kinase and COPII generate LC3 lipidation vesicles from the ER-Golgi intermediate compartment. eLife. 2014;3:e4135.CrossRefGoogle Scholar
  96. 96.
    Luo M, Wu L, Zhang K, et al. miR-216b enhances the efficacy of vemurafenib by targeting Beclin-1, UVRAG and ATG5 in melanoma. Cell Signal. 2017;42:30–43.PubMedCrossRefGoogle Scholar
  97. 97.
    Chen N, Karantza V. Autophagy as a therapeutic target in cancer. Cancer Biol Ther. 2011;11(2):157–68.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Kaufman RJ. Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev. 1999;13(10):1211–33.PubMedCrossRefGoogle Scholar
  99. 99.
    Jhaveri KD, Sakhiya V, Fishbane S. Nephrotoxicity of the BRAF inhibitors Vemurafenib and Dabrafenib. JAMA Oncol. 2015;1(8):1133–4.PubMedCrossRefGoogle Scholar
  100. 100.
    B'Chir W, Maurin AC, Carraro V, et al. The eIF2alpha/ATF4 pathway is essential for stress-induced autophagy gene expression. Nucleic Acids Res. 2013;41(16):7683–99.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Yang IV, Lozupone CA, Schwartz DA. The environment, epigenome, and asthma. J Allergy Clin Immunol. 2017;140(1):14–23.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Grunt TW. Interacting Cancer machineries: cell signaling, lipid metabolism, and epigenetics. Trends Endocrinol Metab. 2017;Google Scholar
  103. 103.
    Kim JH, Ahn JH, Lee M. Upregulation of MicroRNA-1246 is associated with BRAF inhibitor resistance in melanoma cells with mutant BRAF. Cancer Res Treat. 2017;49(4):947–59.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Flockhart RJ, Webster DE, Qu K, et al. BRAFV600E remodels the melanocyte transcriptome and induces BANCR to regulate melanoma cell migration. Genome Res. 2012;22(6):1006–14.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949–54.PubMedCrossRefGoogle Scholar
  106. 106.
    Wang Y, Guo Q, Zhao Y, et al. BRAF-activated long non-coding RNA contributes to cell proliferation and activates autophagy in papillary thyroid carcinoma. Oncol Lett. 2014;8(5):1947–52.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Michaud M, Martins I, Sukkurwala AQ, et al. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science. 2011;334(6062):1573–7.PubMedCrossRefGoogle Scholar
  108. 108.
    Martins I, Wang Y, Michaud M, et al. Molecular mechanisms of ATP secretion during immunogenic cell death. Cell Death Differ. 2014;21(1):79–91.PubMedCrossRefGoogle Scholar
  109. 109.
    Robertson GP. Functional and therapeutic significance of Akt deregulation in malignant melanoma. Cancer Metastasis Rev. 2005;24(2):273–85.PubMedCrossRefGoogle Scholar
  110. 110.
    Zhao Y, Wang W, Min I, et al. BRAF V600E-dependent role of autophagy in uveal melanoma. J Cancer Res Clin Oncol. 2017;143(3):447–55.PubMedCrossRefGoogle Scholar
  111. 111.
    Garg AD, Galluzzi L, Apetoh L, et al. Molecular and translational classifications of DAMPs in immunogenic cell death. Front Immunol. 2015;6:588.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Stagg J, Smyth MJ. Extracellular adenosine triphosphate and adenosine in cancer. Oncogene. 2010;29(39):5346–58.PubMedCrossRefGoogle Scholar
  113. 113.
    Qiu Y, Li WH, Zhang HQ, et al. P2X7 mediates ATP-driven invasiveness in prostate cancer cells. PLoS ONE. 2014;9(12):e114371.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Zimmerer RM, Korn P, Demougin P, et al. Functional features of cancer stem cells in melanoma cell lines. Cancer Cell Int. 2013;13(1):78.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Wei Q, Zhang Y, Sun L, et al. High dose of extracellular ATP switched autophagy to apoptosis in anchorage-dependent and anchorage-independent hepatoma cells. Purinergic Signal. 2013;9(4):585–98.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Young CN, Sinadinos A, Lefebvre A, et al. A novel mechanism of autophagic cell death in dystrophic muscle regulated by P2RX7 receptor large-pore formation and HSP90. Autophagy. 2015;11(1):113–30.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Orioli E, De Marchi E, Giuliani AL, et al. P2X7 receptor orchestrates multiple Signalling pathways triggering inflammation, autophagy and metabolic/trophic responses. Curr Med Chem. 2017;24(21):2261–75.PubMedCrossRefGoogle Scholar
  118. 118.
    Kepp O, Senovilla L, Vitale I, et al. Consensus guidelines for the detection of immunogenic cell death. Oncoimmunology. 2014;3(9):e955691.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Buzzi N, Bilbao PS, Boland R, et al. Extracellular ATP activates MAP kinase cascades through a P2Y purinergic receptor in the human intestinal Caco-2 cell line. Biochim Biophys Acta. 2009;1790(12):1651–9.PubMedCrossRefGoogle Scholar
  120. 120.
    Chang SJ, Tzeng CR, Lee YH, et al. Extracellular ATP activates the PLC/PKC/ERK signaling pathway through the P2Y2 purinergic receptor leading to the induction of early growth response 1 expression and the inhibition of viability in human endometrial stromal cells. Cell Signal. 2008;20(7):1248–55.PubMedCrossRefGoogle Scholar
  121. 121.
    Hill LM, Gavala ML, Lenertz LY, et al. Extracellular ATP may contribute to tissue repair by rapidly stimulating purinergic receptor X7-dependent vascular endothelial growth factor release from primary human monocytes. J Immunol. 2010;185(5):3028–34.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Xu Y, Li N, Xiang R, et al. Emerging roles of the p38 MAPK and PI3K/AKT/mTOR pathways in oncogene-induced senescence. Trends Biochem Sci. 2014;39(6):268–76.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Courtois-Cox S, Jones SL, Cichowski K. Many roads lead to oncogene-induced senescence. Oncogene. 2008;27(20):2801–9.PubMedCrossRefGoogle Scholar
  124. 124.
    Lin AW, Barradas M, Stone JC, et al. Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling. Genes Dev. 1998;12(19):3008–19.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Michaloglou C, Vredeveld LC, Soengas MS, et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature. 2005;436(7051):720–4.PubMedCrossRefGoogle Scholar
  126. 126.
    Ryder M, Gild M, Hohl TM, et al. Genetic and pharmacological targeting of CSF-1/CSF-1R inhibits tumor-associated macrophages and impairs BRAF-induced thyroid cancer progression. PLoS ONE. 2013;8(1):e54302.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Zou M, Baitei EY, Al-Rijjal RA, et al. TSH overcomes Braf(V600E)-induced senescence to promote tumor progression via downregulation of p53 expression in papillary thyroid cancer. Oncogene. 2016;35(15):1909–18.PubMedCrossRefGoogle Scholar
  128. 128.
    Vredeveld LC, Possik PA, Smit MA, et al. Abrogation of BRAFV600E-induced senescence by PI3K pathway activation contributes to melanomagenesis. Genes Dev. 2012;26(10):1055–69.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Liu H, He Z, Simon HU. Autophagy suppresses melanoma tumorigenesis by inducing senescence. Autophagy. 2014;10(2):372–3.PubMedCrossRefGoogle Scholar
  130. 130.
    Liu H, He Z, von Rutte T, et al. Down-regulation of autophagy-related protein 5 (ATG5) contributes to the pathogenesis of early-stage cutaneous melanoma. Sci Transl Med. 2013;5(202):123r–202r.CrossRefGoogle Scholar
  131. 131.
    Xie X, Koh JY, Price S, et al. Atg7 overcomes senescence and promotes growth of BrafV600E-driven melanoma. Cancer Discov. 2015;5(4):410–23.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Schlegel J, Sambade MJ, Sather S, et al. MERTK receptor tyrosine kinase is a therapeutic target in melanoma. J Clin Invest. 2013;123(5):2257–67.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Xue G, Kohler R, Tang F, et al. mTORC1/autophagy-regulated MerTK in mutant BRAFV600 melanoma with acquired resistance to BRAF inhibition. Oncotarget. 2017;8(41):69204–18.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Han J, Bae J, Choi CY, et al. Autophagy induced by AXL receptor tyrosine kinase alleviates acute liver injury via inhibition of NLRP3 inflammasome activation in mice. Autophagy. 2016;12(12):2326–43.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Brosius LA, Chung WS, Sloan SA, et al. Schwann cells use TAM receptor-mediated phagocytosis in addition to autophagy to clear myelin in a mouse model of nerve injury. Proc Natl Acad Sci U S A. 2017;114(38):E8072–80.CrossRefGoogle Scholar
  136. 136.
    Solomon VR, Lee H. Chloroquine and its analogs: a new promise of an old drug for effective and safe cancer therapies. Eur J Pharmacol. 2009;625(1–3):220–33.PubMedCrossRefGoogle Scholar
  137. 137.
    Thome R, Lopes SC, Costa FT, et al. Chloroquine: modes of action of an undervalued drug. Immunol Lett. 2013;153(1–2):50–7.PubMedCrossRefGoogle Scholar
  138. 138.
    Wolpin BM, Rubinson DA, Wang X, et al. Phase II and pharmacodynamic study of autophagy inhibition using hydroxychloroquine in patients with metastatic pancreatic adenocarcinoma. Oncologist. 2014;19(6):637–8.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Boone BA, Bahary N, Zureikat AH, et al. Safety and biologic response of pre-operative autophagy inhibition in combination with gemcitabine in patients with pancreatic adenocarcinoma. Ann Surg Oncol. 2015;22(13):4402–10.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Monma H, Iida Y, Moritani T, et al. Chloroquine augments TRAIL-induced apoptosis and induces G2/M phase arrest in human pancreatic cancer cells. PLoS ONE. 2018;13(3):e193990.CrossRefGoogle Scholar
  141. 141.
    Li ML, Xu YZ, Lu WJ, et al. Chloroquine potentiates the anticancer effect of sunitinib on renal cell carcinoma by inhibiting autophagy and inducing apoptosis. Oncol Lett. 2018;15(3):2839–46.PubMedGoogle Scholar
  142. 142.
    Cai Y, Cai J, Ma Q, et al. Chloroquine affects autophagy to achieve an anticancer effect in EC109 esophageal carcinoma cells in vitro. Oncol Lett. 2018;15(1):1143–8.PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Dermatology, Huashan HospitalFudan UniversityShanghaiChina

Personalised recommendations