Skip to main content
Log in

The Role of Autophagy in the Resistance to BRAF Inhibition in BRAF-Mutated Melanoma

  • Review Article
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

Malignant melanoma is the most aggressive and notorious skin cancer, and metastatic disease is associated with very poor long-term survival outcomes. Although metastatic melanoma patients with oncogenic mutations in the BRAF gene initially respond well to the treatment with specific BRAF inhibitors, most of them will eventually develop resistance to this targeted therapy. As a highly conserved catabolic process, autophagy is responsible for the maintenance of cellular homeostasis and cell survival, and is involved in multiple diseases, including cancer. Recent study results have indicated that autophagy might play a decisive role in the resistance to BRAF inhibitors in BRAF-mutated melanomas. In this review, we will discuss how autophagy is up-regulated by BRAF inhibitors, and how autophagy induces the resistance to these agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Meng XX, Xu HX, Yao M, et al. Implication of unfolded protein response and autophagy in the treatment of BRAF inhibitor resistant melanoma. Anti Cancer Agents Med Chem. 2016;16(3):291–8.

    Article  CAS  Google Scholar 

  2. Spagnolo F, Ghiorzo P, Orgiano L, et al. BRAF-mutant melanoma: treatment approaches, resistance mechanisms, and diagnostic strategies. Onco Targets Ther. 2015;8:157–68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Rastrelli M, Tropea S, Rossi CR, et al. Melanoma: epidemiology, risk factors, pathogenesis, diagnosis and classification. In Vivo. 2014;28(6):1005–11.

    PubMed  Google Scholar 

  4. Luke JJ, Flaherty KT, Ribas A, et al. Targeted agents and immunotherapies: optimizing outcomes in melanoma. Nat Rev Clin Oncol. 2017;14(8):463–82.

    Article  PubMed  CAS  Google Scholar 

  5. Atkins MB, Lotze MT, Dutcher JP, et al. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol. 1999;17(7):2105–16.

    Article  PubMed  CAS  Google Scholar 

  6. Schiller JH, Pugh M, Kirkwood JM, et al. Eastern cooperative group trial of interferon gamma in metastatic melanoma: an innovative study design. Clin Cancer Res. 1996;2(1):29–36.

    PubMed  CAS  Google Scholar 

  7. Parker BS, Rautela J, Hertzog PJ. Antitumour actions of interferons: implications for cancer therapy. Nat Rev Cancer. 2016;16(3):131–44.

    Article  PubMed  CAS  Google Scholar 

  8. Rozeman EA, Dekker T, Haanen J, et al. Advanced melanoma: current treatment options, biomarkers, and future perspectives. Am J Clin Dermatol. 2017; https://doi.org/10.1007/s40257-017-0325-6.

  9. Olszanski AJ, Hoffner BW. Evolving paradigms in melanoma therapy. J Adv Pract Oncol. 2016;7(3):291–4.

    PubMed  PubMed Central  Google Scholar 

  10. Bradish JR, Montironi R, Lopez-Beltran A, et al. Towards personalized therapy for patients with malignant melanoma: molecular insights into the biology of BRAF mutations. Future Oncol. 2013;9(2):245–53.

    Article  PubMed  CAS  Google Scholar 

  11. Ossio R, Roldan-Marin R, Martinez-Said H, et al. Melanoma: a global perspective. Nat Rev Cancer. 2017;17(7):393–4.

    Article  PubMed  CAS  Google Scholar 

  12. Schadendorf D, Fisher DE, Garbe C, et al. Melanoma. Nat Rev Dis Primers. 2015;1:15003.

    Article  PubMed  Google Scholar 

  13. Su MY, Fisher DE. Immunotherapy in the precision medicine era: melanoma and beyond. PLoS Med. 2016;13(12):e1002196.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Merlino G, Herlyn M, Fisher DE, et al. The state of melanoma: challenges and opportunities. Pigment Cell Melanoma Res. 2016;29(4):404–16.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lawrence MS, Stojanov P, Polak P, et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature. 2013;499(7457):214–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Chen SH, Gong X, Zhang Y, et al. RAF inhibitor LY3009120 sensitizes RAS or BRAF mutant cancer to CDK4/6 inhibition by abemaciclib via superior inhibition of phospho-RB and suppression of cyclin D1. Oncogene. 2018;37(6):821–32.

    Article  PubMed  CAS  Google Scholar 

  17. Colombino M, Capone M, Lissia A, et al. BRAF/NRAS mutation frequencies among primary tumors and metastases in patients with melanoma. J Clin Oncol. 2012;30(20):2522–9.

    Article  PubMed  Google Scholar 

  18. Curtin JA, Fridlyand J, Kageshita T, et al. Distinct sets of genetic alterations in melanoma. N Engl J Med. 2005;353(20):2135–47.

    Article  PubMed  CAS  Google Scholar 

  19. Hayward NK, Wilmott JS, Waddell N, et al. Whole-genome landscapes of major melanoma subtypes. Nature. 2017;545(7653):175–80.

    Article  PubMed  CAS  Google Scholar 

  20. Bradish JR, Cheng L. Molecular pathology of malignant melanoma: changing the clinical practice paradigm toward a personalized approach. Hum Pathol. 2014;45(7):1315–26.

    Article  PubMed  CAS  Google Scholar 

  21. Cheng L, Lopez-Beltran A, Massari F, et al. Molecular testing for BRAF mutations to inform melanoma treatment decisions: a move toward precision medicine. Mod Pathol. 2018;31(1):24–38.

    Article  PubMed  CAS  Google Scholar 

  22. Burotto M, Chiou VL, Lee JM, et al. The MAPK pathway across different malignancies: a new perspective. Cancer. 2014;120(22):3446–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Arozarena I, Wellbrock C. Overcoming resistance to BRAF inhibitors. Ann Transl Med. 2017;5(19):387.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Bollag G, Hirth P, Tsai J, et al. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature. 2010;467(7315):596–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Waizenegger IC, Baum A, Steurer S, et al. A novel RAF kinase inhibitor with DFG-out-binding mode: high efficacy in BRAF-mutant tumor xenograft models in the absence of normal tissue Hyperproliferation. Mol Cancer Ther. 2016;15(3):354–65.

    Article  PubMed  CAS  Google Scholar 

  26. Dean L. Vemurafenib therapy and BRAF and NRAS genotype. In: Pratt V, McLeod H, Dean L, et al., editors. Medical genetics summaries [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2012.

  27. Flaherty KT, Puzanov I, Kim KB, et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med. 2010;363(9):809–19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Sosman JA, Kim KB, Schuchter L, et al. Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N Engl J Med. 2012;366(8):707–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. McArthur GA, Chapman PB, Robert C, et al. Safety and efficacy of vemurafenib in BRAF(V600E) and BRAF(V600K) mutation-positive melanoma (BRIM-3): extended follow-up of a phase 3, randomised, open-label study. Lancet Oncol. 2014;15(3):323–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Banzi M, De Blasio S, Lallas A, et al. Dabrafenib: a new opportunity for the treatment of BRAF V600-positive melanoma. Onco Targets Ther. 2016;9:2725–33.

    PubMed  PubMed Central  Google Scholar 

  31. Hauschild A, Grob JJ, Demidov LV, et al. Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet. 2012;380(9839):358–65.

    Article  PubMed  CAS  Google Scholar 

  32. Long GV, Weber JS, Infante JR, et al. Overall survival and durable responses in patients with BRAF V600-mutant metastatic melanoma receiving Dabrafenib combined with Trametinib. J Clin Oncol. 2016;34(8):871–8.

    Article  PubMed  CAS  Google Scholar 

  33. Turajlic S, Furney SJ, Stamp G, et al. Whole-genome sequencing reveals complex mechanisms of intrinsic resistance to BRAF inhibition. Ann Oncol. 2014;25(5):959–67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Shi H, Hugo W, Kong X, et al. Acquired resistance and clonal evolution in melanoma during BRAF inhibitor therapy. Cancer Discov. 2014;4(1):80–93.

    Article  PubMed  CAS  Google Scholar 

  35. Van Allen EM, Wagle N, Sucker A, et al. The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma. Cancer Discov. 2014;4(1):94–109.

    Article  PubMed  CAS  Google Scholar 

  36. Nazarian R, Shi H, Wang Q, et al. Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature. 2010;468(7326):973–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Whittaker SR, Theurillat JP, Van Allen E, et al. A genome-scale RNA interference screen implicates NF1 loss in resistance to RAF inhibition. Cancer Discov. 2013;3(3):350–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Girotti MR, Pedersen M, Sanchez-Laorden B, et al. Inhibiting EGF receptor or SRC family kinase signaling overcomes BRAF inhibitor resistance in melanoma. Cancer Discov. 2013;3(2):158–67.

    Article  PubMed  CAS  Google Scholar 

  39. Villanueva J, Vultur A, Lee JT, et al. Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. Cancer Cell. 2010;18(6):683–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Ascierto PA, McArthur GA, Dreno B, et al. Cobimetinib combined with vemurafenib in advanced BRAF(V600)-mutant melanoma (coBRIM): updated efficacy results from a randomised, double-blind, phase 3 trial. Lancet Oncol. 2016;17(9):1248–60.

    Article  PubMed  CAS  Google Scholar 

  41. Long GV, Flaherty KT, Stroyakovskiy D, et al. Dabrafenib plus trametinib versus dabrafenib monotherapy in patients with metastatic BRAF V600E/K-mutant melanoma: long-term survival and safety analysis of a phase 3 study. Ann Oncol. 2017;28(7):1631–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Brighton HE, Angus SP, Bo T, et al. New mechanisms of resistance to MEK inhibitors in melanoma revealed by intravital imaging. Cancer Res. 2018;78(2):542–57.

    Article  PubMed  CAS  Google Scholar 

  43. Shi H, Hong A, Kong X, et al. A novel AKT1 mutant amplifies an adaptive melanoma response to BRAF inhibition. Cancer Discov. 2014;4(1):69–79.

    Article  PubMed  CAS  Google Scholar 

  44. Muller J, Krijgsman O, Tsoi J, et al. Low MITF/AXL ratio predicts early resistance to multiple targeted drugs in melanoma. Nat Commun. 2014;5:5712.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Smith MP, Brunton H, Rowling EJ, et al. Inhibiting drivers of non-mutational drug tolerance is a salvage strategy for targeted melanoma therapy. Cancer Cell. 2016;29(3):270–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Straussman R, Morikawa T, Shee K, et al. Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature. 2012;487(7408):500–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Hirata E, Girotti MR, Viros A, et al. Intravital imaging reveals how BRAF inhibition generates drug-tolerant microenvironments with high integrin beta1/FAK signaling. Cancer Cell. 2015;27(4):574–88.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Smith MP, Sanchez-Laorden B, O'Brien K, et al. The immune microenvironment confers resistance to MAPK pathway inhibitors through macrophage-derived TNFalpha. Cancer Discov. 2014;4(10):1214–29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Wang T, Xiao M, Ge Y, et al. BRAF inhibition stimulates melanoma-associated macrophages to drive tumor growth. Clin Cancer Res. 2015;21(7):1652–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Klionsky DJ. Autophagy: from phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol. 2007;8(11):931–7.

    Article  PubMed  CAS  Google Scholar 

  51. Mizushima N, Klionsky DJ. Protein turnover via autophagy: implications for metabolism. Annu Rev Nutr. 2007;27:19–40.

    Article  PubMed  CAS  Google Scholar 

  52. Yu L, Chen Y, Tooze SA. Autophagy pathway: cellular and molecular mechanisms. Autophagy 2017:0.

  53. Gallagher LE, Chan EY. Early signalling events of autophagy. Essays Biochem. 2013;55:1–15.

    Article  PubMed  Google Scholar 

  54. Axe EL, Walker SA, Manifava M, et al. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol. 2008;182(4):685–701.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ganley IG, Lam DH, Wang J, et al. ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem. 2009;284(18):12297–305.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Itakura E, Kishi C, Inoue K, et al. Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol Biol Cell. 2008;19(12):5360–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Zhong Y, Wang QJ, Li X, et al. Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nat Cell Biol. 2009;11(4):468–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Sun Q, Fan W, Chen K, et al. Identification of Barkor as a mammalian autophagy-specific factor for Beclin 1 and class III phosphatidylinositol 3-kinase. Proc Natl Acad Sci U S A. 2008;105(49):19211–6.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Chan EY, Longatti A, McKnight NC, et al. Kinase-inactivated ULK proteins inhibit autophagy via their conserved C-terminal domains using an Atg13-independent mechanism. Mol Cell Biol. 2009;29(1):157–71.

    Article  PubMed  CAS  Google Scholar 

  60. Suzuki SW, Yamamoto H, Oikawa Y, et al. Atg13 HORMA domain recruits Atg9 vesicles during autophagosome formation. Proc Natl Acad Sci U S A. 2015;112(11):3350–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Lamb CA, Nuhlen S, Judith D, et al. TBC1D14 regulates autophagy via the TRAPP complex and ATG9 traffic. EMBO J. 2016;35(3):281–301.

    Article  PubMed  CAS  Google Scholar 

  62. Webster CP, Smith EF, Bauer CS, et al. The C9orf72 protein interacts with Rab1a and the ULK1 complex to regulate initiation of autophagy. EMBO J. 2016;35(15):1656–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Lin MG, Hurley JH. Structure and function of the ULK1 complex in autophagy. Curr Opin Cell Biol. 2016;39:61–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Mao K, Klionsky DJ. AMPK activates autophagy by phosphorylating ULK1. Circ Res. 2011;108(7):787–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Kim J, Kundu M, Viollet B, et al. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 2011;13(2):132–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Jung CH, Jun CB, Ro SH, et al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell. 2009;20(7):1992–2003.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Backer JM. The intricate regulation and complex functions of the class III phosphoinositide 3-kinase Vps34. Biochem J. 2016;473(15):2251–71.

    Article  PubMed  CAS  Google Scholar 

  68. Lamb CA, Yoshimori T, Tooze SA. The autophagosome: origins unknown, biogenesis complex. Nat Rev Mol Cell Biol. 2013;14(12):759–74.

    Article  PubMed  CAS  Google Scholar 

  69. Fimia GM, Di Bartolomeo S, Piacentini M, et al. Unleashing the Ambra1-Beclin 1 complex from dynein chains: Ulk1 sets Ambra1 free to induce autophagy. Autophagy. 2011;7(1):115–7.

    Article  PubMed  Google Scholar 

  70. Hurley JH, Young LN. Mechanisms of autophagy initiation. Annu Rev Biochem. 2017;86:225–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Lang T, Reiche S, Straub M, et al. Autophagy and the cvt pathway both depend on AUT9. J Bacteriol. 2000;182(8):2125–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Yamamoto H, Kakuta S, Watanabe TM, et al. Atg9 vesicles are an important membrane source during early steps of autophagosome formation. J Cell Biol. 2012;198(2):219–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Jin M, Klionsky DJ. Transcriptional regulation of ATG9 by the Pho23-Rpd3 complex modulates the frequency of autophagosome formation. Autophagy. 2014;10(9):1681–2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Hanada T, Noda NN, Satomi Y, et al. The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J Biol Chem. 2007;282(52):37298–302.

    Article  PubMed  CAS  Google Scholar 

  75. Fujita N, Itoh T, Omori H, et al. The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. Mol Biol Cell. 2008;19(5):2092–100.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Pierdominici M, Vomero M, Barbati C, et al. Role of autophagy in immunity and autoimmunity, with a special focus on systemic lupus erythematosus. FASEB J. 2012;26(4):1400–12.

    Article  PubMed  CAS  Google Scholar 

  77. Kim SE, Park HJ, Jeong HK, et al. Autophagy sustains the survival of human pancreatic cancer PANC-1 cells under extreme nutrient deprivation conditions. Biochem Biophys Res Commun. 2015;463(3):205–10.

    Article  PubMed  CAS  Google Scholar 

  78. Noman MZ, Berchem G, Janji B. Targeting autophagy blocks melanoma growth by bringing natural killer cells to the tumor battlefield. Autophagy. 2018:1–3.

  79. Rangwala R, Chang YC, Hu J, et al. Combined MTOR and autophagy inhibition: phase I trial of hydroxychloroquine and temsirolimus in patients with advanced solid tumors and melanoma. Autophagy. 2014;10(8):1391–402.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Saglar E, Unlu S, Babalioglu I, et al. Assessment of ER stress and autophagy induced by ionizing radiation in both radiotherapy patients and ex vivo irradiated samples. J Biochem Mol Toxicol. 2014;28(9):413–7.

    Article  PubMed  CAS  Google Scholar 

  81. Mukubou H, Tsujimura T, Sasaki R, et al. The role of autophagy in the treatment of pancreatic cancer with gemcitabine and ionizing radiation. Int J Oncol. 2010;37(4):821–8.

    PubMed  CAS  Google Scholar 

  82. Galluzzi L, Pietrocola F, Bravo-San PJ, et al. Autophagy in malignant transformation and cancer progression. EMBO J. 2015;34(7):856–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Menzies FM, Fleming A, Rubinsztein DC. Compromised autophagy and neurodegenerative diseases. Nat Rev Neurosci. 2015;16(6):345–57.

    Article  PubMed  CAS  Google Scholar 

  84. Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues. Cell. 2011;147(4):728–41.

    Article  PubMed  CAS  Google Scholar 

  85. Gomes LC, Dikic I. Autophagy in antimicrobial immunity. Mol Cell. 2014;54(2):224–33.

    Article  PubMed  CAS  Google Scholar 

  86. Ji C, Zhang Z, Chen L, et al. Endoplasmic reticulum stress-induced autophagy determines the susceptibility of melanoma cells to dabrafenib. Drug Des Devel Ther. 2016;10:2491–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Martin S, Dudek-Peric AM, Garg AD, et al. An autophagy-driven pathway of ATP secretion supports the aggressive phenotype of BRAF(V600E) inhibitor-resistant metastatic melanoma cells. Autophagy. 2017;13(9):1512–27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Ma XH, Piao SF, Dey S, et al. Targeting ER stress-induced autophagy overcomes BRAF inhibitor resistance in melanoma. J Clin Invest. 2014;124(3):1406–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Martin S, Dudek-Peric AM, Maes H, et al. Concurrent MEK and autophagy inhibition is required to restore cell death associated danger-signalling in Vemurafenib-resistant melanoma cells. Biochem Pharmacol. 2015;93(3):290–304.

    Article  PubMed  CAS  Google Scholar 

  90. Li Z, Jiang K, Zhu X, et al. Encorafenib (LGX818), a potent BRAF inhibitor, induces senescence accompanied by autophagy in BRAFV600E melanoma cells. Cancer Lett. 2016;370(2):332–44.

    Article  PubMed  CAS  Google Scholar 

  91. Goodall ML, Wang T, Martin KR, et al. Development of potent autophagy inhibitors that sensitize oncogenic BRAF V600E mutant melanoma tumor cells to vemurafenib. Autophagy. 2014;10(6):1120–36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Wang W, Kang H, Zhao Y, et al. Targeting autophagy sensitizes BRAF-mutant thyroid Cancer to Vemurafenib. J Clin Endocrinol Metab. 2017;102(2):634–43.

    PubMed  Google Scholar 

  93. Goulielmaki M, Koustas E, Moysidou E, et al. BRAF associated autophagy exploitation: BRAF and autophagy inhibitors synergise to efficiently overcome resistance of BRAF mutant colorectal cancer cells. Oncotarget. 2016;7(8):9188–221.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Mulcahy LJ, Zahedi S, Griesinger AM, et al. Autophagy inhibition overcomes multiple mechanisms of resistance to BRAF inhibition in brain tumors. eLife. 2017;6:e19671.

    Article  Google Scholar 

  95. Ge L, Zhang M, Schekman R. Phosphatidylinositol 3-kinase and COPII generate LC3 lipidation vesicles from the ER-Golgi intermediate compartment. eLife. 2014;3:e4135.

    Article  Google Scholar 

  96. Luo M, Wu L, Zhang K, et al. miR-216b enhances the efficacy of vemurafenib by targeting Beclin-1, UVRAG and ATG5 in melanoma. Cell Signal. 2017;42:30–43.

    Article  PubMed  CAS  Google Scholar 

  97. Chen N, Karantza V. Autophagy as a therapeutic target in cancer. Cancer Biol Ther. 2011;11(2):157–68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Kaufman RJ. Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev. 1999;13(10):1211–33.

    Article  PubMed  CAS  Google Scholar 

  99. Jhaveri KD, Sakhiya V, Fishbane S. Nephrotoxicity of the BRAF inhibitors Vemurafenib and Dabrafenib. JAMA Oncol. 2015;1(8):1133–4.

    Article  PubMed  Google Scholar 

  100. B'Chir W, Maurin AC, Carraro V, et al. The eIF2alpha/ATF4 pathway is essential for stress-induced autophagy gene expression. Nucleic Acids Res. 2013;41(16):7683–99.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Yang IV, Lozupone CA, Schwartz DA. The environment, epigenome, and asthma. J Allergy Clin Immunol. 2017;140(1):14–23.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Grunt TW. Interacting Cancer machineries: cell signaling, lipid metabolism, and epigenetics. Trends Endocrinol Metab. 2017;

  103. Kim JH, Ahn JH, Lee M. Upregulation of MicroRNA-1246 is associated with BRAF inhibitor resistance in melanoma cells with mutant BRAF. Cancer Res Treat. 2017;49(4):947–59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Flockhart RJ, Webster DE, Qu K, et al. BRAFV600E remodels the melanocyte transcriptome and induces BANCR to regulate melanoma cell migration. Genome Res. 2012;22(6):1006–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949–54.

    Article  PubMed  CAS  Google Scholar 

  106. Wang Y, Guo Q, Zhao Y, et al. BRAF-activated long non-coding RNA contributes to cell proliferation and activates autophagy in papillary thyroid carcinoma. Oncol Lett. 2014;8(5):1947–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Michaud M, Martins I, Sukkurwala AQ, et al. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science. 2011;334(6062):1573–7.

    Article  PubMed  CAS  Google Scholar 

  108. Martins I, Wang Y, Michaud M, et al. Molecular mechanisms of ATP secretion during immunogenic cell death. Cell Death Differ. 2014;21(1):79–91.

    Article  PubMed  CAS  Google Scholar 

  109. Robertson GP. Functional and therapeutic significance of Akt deregulation in malignant melanoma. Cancer Metastasis Rev. 2005;24(2):273–85.

    Article  PubMed  CAS  Google Scholar 

  110. Zhao Y, Wang W, Min I, et al. BRAF V600E-dependent role of autophagy in uveal melanoma. J Cancer Res Clin Oncol. 2017;143(3):447–55.

    Article  PubMed  CAS  Google Scholar 

  111. Garg AD, Galluzzi L, Apetoh L, et al. Molecular and translational classifications of DAMPs in immunogenic cell death. Front Immunol. 2015;6:588.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Stagg J, Smyth MJ. Extracellular adenosine triphosphate and adenosine in cancer. Oncogene. 2010;29(39):5346–58.

    Article  PubMed  CAS  Google Scholar 

  113. Qiu Y, Li WH, Zhang HQ, et al. P2X7 mediates ATP-driven invasiveness in prostate cancer cells. PLoS ONE. 2014;9(12):e114371.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Zimmerer RM, Korn P, Demougin P, et al. Functional features of cancer stem cells in melanoma cell lines. Cancer Cell Int. 2013;13(1):78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Wei Q, Zhang Y, Sun L, et al. High dose of extracellular ATP switched autophagy to apoptosis in anchorage-dependent and anchorage-independent hepatoma cells. Purinergic Signal. 2013;9(4):585–98.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Young CN, Sinadinos A, Lefebvre A, et al. A novel mechanism of autophagic cell death in dystrophic muscle regulated by P2RX7 receptor large-pore formation and HSP90. Autophagy. 2015;11(1):113–30.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Orioli E, De Marchi E, Giuliani AL, et al. P2X7 receptor orchestrates multiple Signalling pathways triggering inflammation, autophagy and metabolic/trophic responses. Curr Med Chem. 2017;24(21):2261–75.

    Article  PubMed  CAS  Google Scholar 

  118. Kepp O, Senovilla L, Vitale I, et al. Consensus guidelines for the detection of immunogenic cell death. Oncoimmunology. 2014;3(9):e955691.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Buzzi N, Bilbao PS, Boland R, et al. Extracellular ATP activates MAP kinase cascades through a P2Y purinergic receptor in the human intestinal Caco-2 cell line. Biochim Biophys Acta. 2009;1790(12):1651–9.

    Article  PubMed  CAS  Google Scholar 

  120. Chang SJ, Tzeng CR, Lee YH, et al. Extracellular ATP activates the PLC/PKC/ERK signaling pathway through the P2Y2 purinergic receptor leading to the induction of early growth response 1 expression and the inhibition of viability in human endometrial stromal cells. Cell Signal. 2008;20(7):1248–55.

    Article  PubMed  CAS  Google Scholar 

  121. Hill LM, Gavala ML, Lenertz LY, et al. Extracellular ATP may contribute to tissue repair by rapidly stimulating purinergic receptor X7-dependent vascular endothelial growth factor release from primary human monocytes. J Immunol. 2010;185(5):3028–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Xu Y, Li N, Xiang R, et al. Emerging roles of the p38 MAPK and PI3K/AKT/mTOR pathways in oncogene-induced senescence. Trends Biochem Sci. 2014;39(6):268–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Courtois-Cox S, Jones SL, Cichowski K. Many roads lead to oncogene-induced senescence. Oncogene. 2008;27(20):2801–9.

    Article  PubMed  CAS  Google Scholar 

  124. Lin AW, Barradas M, Stone JC, et al. Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling. Genes Dev. 1998;12(19):3008–19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Michaloglou C, Vredeveld LC, Soengas MS, et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature. 2005;436(7051):720–4.

    Article  PubMed  CAS  Google Scholar 

  126. Ryder M, Gild M, Hohl TM, et al. Genetic and pharmacological targeting of CSF-1/CSF-1R inhibits tumor-associated macrophages and impairs BRAF-induced thyroid cancer progression. PLoS ONE. 2013;8(1):e54302.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Zou M, Baitei EY, Al-Rijjal RA, et al. TSH overcomes Braf(V600E)-induced senescence to promote tumor progression via downregulation of p53 expression in papillary thyroid cancer. Oncogene. 2016;35(15):1909–18.

    Article  PubMed  CAS  Google Scholar 

  128. Vredeveld LC, Possik PA, Smit MA, et al. Abrogation of BRAFV600E-induced senescence by PI3K pathway activation contributes to melanomagenesis. Genes Dev. 2012;26(10):1055–69.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Liu H, He Z, Simon HU. Autophagy suppresses melanoma tumorigenesis by inducing senescence. Autophagy. 2014;10(2):372–3.

    Article  PubMed  CAS  Google Scholar 

  130. Liu H, He Z, von Rutte T, et al. Down-regulation of autophagy-related protein 5 (ATG5) contributes to the pathogenesis of early-stage cutaneous melanoma. Sci Transl Med. 2013;5(202):123r–202r.

    Article  CAS  Google Scholar 

  131. Xie X, Koh JY, Price S, et al. Atg7 overcomes senescence and promotes growth of BrafV600E-driven melanoma. Cancer Discov. 2015;5(4):410–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Schlegel J, Sambade MJ, Sather S, et al. MERTK receptor tyrosine kinase is a therapeutic target in melanoma. J Clin Invest. 2013;123(5):2257–67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Xue G, Kohler R, Tang F, et al. mTORC1/autophagy-regulated MerTK in mutant BRAFV600 melanoma with acquired resistance to BRAF inhibition. Oncotarget. 2017;8(41):69204–18.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Han J, Bae J, Choi CY, et al. Autophagy induced by AXL receptor tyrosine kinase alleviates acute liver injury via inhibition of NLRP3 inflammasome activation in mice. Autophagy. 2016;12(12):2326–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Brosius LA, Chung WS, Sloan SA, et al. Schwann cells use TAM receptor-mediated phagocytosis in addition to autophagy to clear myelin in a mouse model of nerve injury. Proc Natl Acad Sci U S A. 2017;114(38):E8072–80.

    Article  CAS  Google Scholar 

  136. Solomon VR, Lee H. Chloroquine and its analogs: a new promise of an old drug for effective and safe cancer therapies. Eur J Pharmacol. 2009;625(1–3):220–33.

    Article  PubMed  CAS  Google Scholar 

  137. Thome R, Lopes SC, Costa FT, et al. Chloroquine: modes of action of an undervalued drug. Immunol Lett. 2013;153(1–2):50–7.

    Article  PubMed  CAS  Google Scholar 

  138. Wolpin BM, Rubinson DA, Wang X, et al. Phase II and pharmacodynamic study of autophagy inhibition using hydroxychloroquine in patients with metastatic pancreatic adenocarcinoma. Oncologist. 2014;19(6):637–8.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Boone BA, Bahary N, Zureikat AH, et al. Safety and biologic response of pre-operative autophagy inhibition in combination with gemcitabine in patients with pancreatic adenocarcinoma. Ann Surg Oncol. 2015;22(13):4402–10.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Monma H, Iida Y, Moritani T, et al. Chloroquine augments TRAIL-induced apoptosis and induces G2/M phase arrest in human pancreatic cancer cells. PLoS ONE. 2018;13(3):e193990.

    Article  CAS  Google Scholar 

  141. Li ML, Xu YZ, Lu WJ, et al. Chloroquine potentiates the anticancer effect of sunitinib on renal cell carcinoma by inhibiting autophagy and inducing apoptosis. Oncol Lett. 2018;15(3):2839–46.

    PubMed  Google Scholar 

  142. Cai Y, Cai J, Ma Q, et al. Chloroquine affects autophagy to achieve an anticancer effect in EC109 esophageal carcinoma cells in vitro. Oncol Lett. 2018;15(1):1143–8.

    PubMed  Google Scholar 

Download references

Funding

No external funding was used in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinhua Xu.

Ethics declarations

Conflict of Interest

Xiao Liu, Jinfeng Wu, Haihong Qin, and Jinhua Xu declare that they have no conflicts of interest that might be relevant to the contents of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Wu, J., Qin, H. et al. The Role of Autophagy in the Resistance to BRAF Inhibition in BRAF-Mutated Melanoma. Targ Oncol 13, 437–446 (2018). https://doi.org/10.1007/s11523-018-0565-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-018-0565-2

Navigation