Advertisement

Targeted Oncology

, Volume 13, Issue 2, pp 175–187 | Cite as

Extracellular Vesicles As miRNA Nano-Shuttles: Dual Role in Tumor Progression

  • Marzia Pucci
  • Pablo Reclusa Asiáin
  • Elena Duréndez Sáez
  • Eloisa Jantus-Lewintre
  • Mahafarin Malarani
  • Shahanavaj Khan
  • Simona Fontana
  • Aung Naing
  • Francesco Passiglia
  • Luis E. Raez
  • Christian Rolfo
  • Simona Taverna
Review Article

Abstract

Tumor-derived extracellular vesicles (EVs) have a pleiotropic role in cancer, interacting with target cells of the tumor microenvironment, such as fibroblasts, immune and endothelial cells. EVs can modulate tumor progression, angiogenic switch, metastasis, and immune escape. These vesicles are nano-shuttles containing a wide spectrum of miRNAs that contribute to tumor progression. MiRNAs contained in extracellular vesicles (EV-miRNAs) are disseminated in the extracellular space and are able to influence the expression of target genes with either tumor suppressor or oncogenic functions, depending on both parental and target cells. Metastatic cancer cells can balance their oncogenic potential by expressing miRNAs with oncogenic function, whilst exporting miRNAs with tumor suppressor roles out of the cells. Importantly, treatment of cancer cells with specific natural and chemical compounds could induce the elimination of miRNAs with oncogenic function, thereby reducing their aggressiveness. In this review, we discuss the mechanisms by which EV-miRNAs, acting as miRNAs with oncogenic or tumor suppressor functions, could contribute to cancer progression.

Notes

Acknowledgements

We would like to thank Axelle Staes for English language editing.

Compliance with Ethical Standards

Funding

Elena Durendez has a predoctoral fellowship by Asociacion Española Contra el Cancer (AECC, Valencia, Spain).

Conflict of Interest

LR gets research support from EXOSOME DX. All other authors have no conflicts of interest to declare.

References

  1. 1.
    Tkach M, Thery C. Communication by extracellular vesicles: where we are and where we need to go. Cell. 2016;164(6):1226–32.PubMedCrossRefGoogle Scholar
  2. 2.
    Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 2013;200(4):373–83.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem. 1987;262(19):9412–20.PubMedGoogle Scholar
  4. 4.
    Kowal J, Tkach M, Thery C. Biogenesis and secretion of exosomes. Curr Opin Cell Biol. 2014;29:116–25.PubMedCrossRefGoogle Scholar
  5. 5.
    Maas SLN, Breakefield XO, Weaver AM. Extracellular vesicles: unique intercellular delivery vehicles. Trends Cell Biol. 2017;27(3):172–88.PubMedCrossRefGoogle Scholar
  6. 6.
    Mathivanan S, Fahner CJ, Reid GE, Simpson RJ. ExoCarta 2012: database of exosomal proteins, RNA and lipids. Nucleic Acids Res. 2012;40(Database issue):D1241–4.PubMedCrossRefGoogle Scholar
  7. 7.
    Kalra H, Simpson RJ, Ji H, Aikawa E, Altevogt P, Askenase P, et al. Vesiclepedia: a compendium for extracellular vesicles with continuous community annotation. PLoS Biol. 2012;10(12):e1001450.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Kim D-K, Kang B, Kim OY, Choi D-S, Lee J, Kim SR, et al. EVpedia: an integrated database of high-throughput data for systemic analyses of extracellular vesicles. J Extracell Vesicles. 2013;2.Google Scholar
  9. 9.
    Koppers-Lalic D, Hackenberg M, Bijnsdorp IV, van Eijndhoven MAJ, Sadek P, Sie D, et al. Nontemplated nucleotide additions distinguish the small RNA composition in cells from exosomes. Cell Rep. 2014;8(6):1649–58.PubMedCrossRefGoogle Scholar
  10. 10.
    Yang F, Ning Z, Ma L, Liu W, Shao C, Shu Y, et al. Exosomal miRNAs and miRNA dysregulation in cancer-associated fibroblasts. Mol Cancer. 2017;16(1):148.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Bronisz A, Godlewski J, Chiocca EA. Extracellular vesicles and MicroRNAs: their role in Tumorigenicity and therapy for brain Tumors. Cell Mol Neurobiol. 2016;36(3):361–76.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Bayraktar R, Van Roosbroeck K, Calin GA. Cell-to-cell communication: microRNAs as hormones. Mol Oncol. 2017.Google Scholar
  13. 13.
    Yokoi A, Yoshioka Y, Yamamoto Y, Ishikawa M, Ikeda S-I, Kato T, et al. Malignant extracellular vesicles carrying MMP1 mRNA facilitate peritoneal dissemination in ovarian cancer. Nat Commun. 2017;8:14470.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Lobb RJ, Lima LG, Moller A. Exosomes: key mediators of metastasis and pre-metastatic niche formation. Semin Cell Dev Biol. 2017;67:3–10.PubMedCrossRefGoogle Scholar
  15. 15.
    Corrado C, Flugy AM, Taverna S, Raimondo S, Guggino G, Karmali R, et al. Carboxyamidotriazole-orotate inhibits the growth of imatinib-resistant chronic myeloid leukaemia cells and modulates exosomes-stimulated angiogenesis. PLoS One. 2012;7(8):e42310.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Kucharzewska P, Christianson HC, Welch JE, Svensson KJ, Fredlund E, Ringner M, et al. Exosomes reflect the hypoxic status of glioma cells and mediate hypoxia-dependent activation of vascular cells during tumor development. Proc Natl Acad Sci U S A. 2013;110(18):7312–7.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Mineo M, Garfield SH, Taverna S, Flugy A, De Leo G, Alessandro R, et al. Exosomes released by K562 chronic myeloid leukemia cells promote angiogenesis in a Src-dependent fashion. Angiogenesis. 2012;15(1):33–45.PubMedCrossRefGoogle Scholar
  18. 18.
    Taverna S, Flugy A, Saieva L, Kohn EC, Santoro A, Meraviglia S, et al. Role of exosomes released by chronic myelogenous leukemia cells in angiogenesis. Int J Cancer. 2012;130(9):2033–43.PubMedCrossRefGoogle Scholar
  19. 19.
    Umezu T, Tadokoro H, Azuma K, Yoshizawa S, Ohyashiki K, Ohyashiki JH. Exosomal miR-135b shed from hypoxic multiple myeloma cells enhances angiogenesis by targeting factor-inhibiting HIF-1. Blood. 2014;124(25):3748–57.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Taylor DD, Gercel-Taylor C. Exosomes/microvesicles: mediators of cancer-associated immunosuppressive microenvironments. Semin Immunopathol. 2011;33(5):441–54.PubMedCrossRefGoogle Scholar
  21. 21.
    Filipazzi P, Burdek M, Villa A, Rivoltini L, Huber V. Recent advances on the role of tumor exosomes in immunosuppression and disease progression. Semin Cancer Biol. 2012;22(4):342–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Hoshino A, Costa-Silva B, Shen T-L, Rodrigues G, Hashimoto A, Tesic Mark M, et al. Tumour exosome integrins determine organotropic metastasis. Nature. 2015;527(7578):329–35.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Taverna S, Pucci M, Giallombardo M, Di Bella MA, Santarpia M, Reclusa P, et al. Amphiregulin contained in NSCLC-exosomes induces osteoclast differentiation through the activation of EGFR pathway. Sci Rep. 2017;7(1):3170.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Peinado H, Aleckovic M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med. 2012;18(6):883–91.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Pegtel DM, Cosmopoulos K, Thorley-Lawson DA, van Eijndhoven MAJ, Hopmans ES, Lindenberg JL, et al. Functional delivery of viral miRNAs via exosomes. Proc Natl Acad Sci U S A. 2010;107(14):6328–33.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Turchinovich A, Weiz L, Langheinz A, Burwinkel B. Characterization of extracellular circulating microRNA. Nucleic Acids Res. 2011;39(16):7223–33.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U S A. 2011;108(12):5003–8.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Tran N. Cancer Exosomes as miRNA factories. Trends Cancer. 2016;2(7):329–31.PubMedCrossRefGoogle Scholar
  30. 30.
    Winter J, Diederichs S. Argonaute proteins regulate microRNA stability: increased microRNA abundance by Argonaute proteins is due to microRNA stabilization. RNA Biol. 2011;8(6):1149–57.PubMedCrossRefGoogle Scholar
  31. 31.
    Yu X, Odenthal M, Fries JWU. Exosomes as miRNA Carriers: Formation-Function-Future. Int J Mol Sci. 2016;17(12).Google Scholar
  32. 32.
    Meijer HA, Smith EM, Bushell M. Regulation of miRNA strand selection: follow the leader? Biochem Soc Trans. 2014;42(4):1135–40.PubMedCrossRefGoogle Scholar
  33. 33.
    Villarroya-Beltri C, Baixauli F, Gutierrez-Vazquez C, Sanchez-Madrid F, Mittelbrunn M. Sorting it out: regulation of exosome loading. Semin Cancer Biol. 2014;28:3–13.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Santangelo L, Giurato G, Cicchini C, Montaldo C, Mancone C, Tarallo R, et al. The RNA-binding protein SYNCRIP is a component of the Hepatocyte Exosomal machinery controlling MicroRNA sorting. Cell Rep. 2016;17(3):799–808.PubMedCrossRefGoogle Scholar
  35. 35.
    Zhang J, Li S, Li L, Li M, Guo C, Yao J, et al. Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics Proteomics Bioinform. 2015;13(1):17–24.CrossRefGoogle Scholar
  36. 36.
    Gibbings DJ, Ciaudo C, Erhardt M, Voinnet O. Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nat Cell Biol. 2009;11(9):1143–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Kosaka N, Iguchi H, Hagiwara K, Yoshioka Y, Takeshita F, Ochiya T. Neutral sphingomyelinase 2 (nSMase2)-dependent exosomal transfer of angiogenic microRNAs regulate cancer cell metastasis. J Biol Chem. 2013;288(15):10849–59.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Guduric-Fuchs J, O’Connor A, Camp B, O’Neill CL, Medina RJ, Simpson DA. Selective extracellular vesicle-mediated export of an overlapping set of microRNAs from multiple cell types. BMC Genomics. 2012;13:357.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Kossinova OA, Gopanenko AV, Tamkovich SN, Krasheninina OA, Tupikin AE, Kiseleva E, et al. Cytosolic YB-1 and NSUN2 are the only proteins recognizing specific motifs present in mRNAs enriched in exosomes. Biochim Biophys Acta. 2017;1865(6):664–73.PubMedCrossRefGoogle Scholar
  40. 40.
    Chen X, Liang H, Zhang J, Zen K, Zhang C-Y. Secreted microRNAs: a new form of intercellular communication. Trends Cell Biol. 2012;22(3):125–32.PubMedCrossRefGoogle Scholar
  41. 41.
    Montecalvo A, Larregina AT, Shufesky WJ, Stolz DB, Sullivan MLG, Karlsson JM, et al. Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood. 2012;119(3):756–66.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Melo SA, Sugimoto H, O’Connell JT, Kato N, Villanueva A, Vidal A, et al. Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell. 2014;26(5):707–21.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Kalluri R. The biology and function of exosomes in cancer. J Clin Invest. 2016;126(4):1208–15.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Alexander M, Hu R, Runtsch MC, Kagele DA, Mosbruger TL, Tolmachova T, et al. Exosome-delivered microRNAs modulate the inflammatory response to endotoxin. Nat Commun. 2015;6:7321.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Azmi AS, Bao B, Sarkar FH. Exosomes in cancer development, metastasis, and drug resistance: a comprehensive review. Cancer Metastasis Rev. 2013;32(3–4):623–42.PubMedCrossRefGoogle Scholar
  46. 46.
    Abels ER, Breakefield XO. Introduction to Extracellular Vesicles: Biogenesis, RNA Cargo Selection, Content, Release, and Uptake. Vol. 36, Cellular and molecular neurobiology. United States; 2016. p. 301–12.Google Scholar
  47. 47.
    Cereghetti DM, Lee PP. Tumor-derived Exosomes contain microRNAs with immunological function: implications for a novel Immunosuppression mechanism. MicroRNA (Shariqah, United Arab Emirates). 2014;2(3):194–204.Google Scholar
  48. 48.
    Gajos-Michniewicz A, Duechler M, Czyz M. MiRNA in melanoma-derived exosomes. Cancer Lett. 2014;347(1):29–37.PubMedCrossRefGoogle Scholar
  49. 49.
    McClure C, Brudecki L, Ferguson DA, Yao ZQ, Moorman JP, McCall CE, et al. MicroRNA 21 (miR-21) and miR-181b couple with NFI-A to generate myeloid-derived suppressor cells and promote immunosuppression in late sepsis. Infect Immun. 2014;82(9):3816–25.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Chevolet I, Speeckaert R, Schreuer M, Neyns B, Krysko O, Bachert C, et al. Clinical significance of plasmacytoid dendritic cells and myeloid-derived suppressor cells in melanoma. J Transl Med. 2015;13:9.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Fabbri M, Paone A, Calore F, Galli R, Gaudio E, Santhanam R, et al. MicroRNAs bind to toll-like receptors to induce prometastatic inflammatory response. Proc Natl Acad Sci U S A. 2012;109(31):E2110–6.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Gao F, Zhao Z-L, Zhao W-T, Fan Q-R, Wang S-C, Li J, et al. miR-9 modulates the expression of interferon-regulated genes and MHC class I molecules in human nasopharyngeal carcinoma cells. Biochem Biophys Res Commun. 2013;431(3):610–6.PubMedCrossRefGoogle Scholar
  53. 53.
    Le MTN, Hamar P, Guo C, Basar E, Perdigao-Henriques R, Balaj L, et al. miR-200-containing extracellular vesicles promote breast cancer cell metastasis. J Clin Invest 2014;124(12):5109–5128.Google Scholar
  54. 54.
    Felicetti F, De Feo A, Coscia C, Puglisi R, Pedini F, Pasquini L, et al. Exosome-mediated transfer of miR-222 is sufficient to increase tumor malignancy in melanoma. J Transl Med. 2016;14:56.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Ostenfeld MS, Jeppesen DK, Laurberg JR, Boysen AT, Bramsen JB, Primdal-Bengtson B, et al. Cellular disposal of miR23b by RAB27-dependent exosome release is linked to acquisition of metastatic properties. Cancer Res. 2014;74(20):5758–71.PubMedCrossRefGoogle Scholar
  56. 56.
    Bertoli G, Cava C, Castiglioni I. MicroRNAs: new biomarkers for diagnosis, prognosis, therapy prediction and therapeutic tools for breast cancer. Theranostics. 2015;5(10):1122–43.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Akao Y, Nakagawa Y, Hirata I, Iio A, Itoh T, Kojima K, et al. Role of anti-oncomirs miR-143 and -145 in human colorectal tumors. Cancer Gene Ther. 2010;17(6):398–408.PubMedCrossRefGoogle Scholar
  58. 58.
    Akao Y, Khoo F, Kumazaki M, Shinohara H, Miki K, Yamada N. Extracellular disposal of tumor-suppressor miRs-145 and -34a via microvesicles and 5-FU resistance of human colon cancer cells. Int J Mol Sci. 2014;15(1):1392–401.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Jia Y, Chen Y, Wang Q, Jayasinghe U, Luo X, Wei Q, et al. Exosome: emerging biomarker in breast cancer. Oncotarget. 2017;8(25):41717–33.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Bovy N, Blomme B, Freres P, Dederen S, Nivelles O, Lion M, et al. Endothelial exosomes contribute to the antitumor response during breast cancer neoadjuvant chemotherapy via microRNA transfer. Oncotarget. 2015;6(12):10253–66.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Skog J, Wurdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol. 2008;10(12):1470–6.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Mayers JR, Audhya A. Vesicle formation within endosomes: an ESCRT marks the spot. Commun Integr Biol. 2012;5(1):50–6.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Fernandez-Messina L, Gutierrez-Vazquez C, Rivas-Garcia E, Sanchez-Madrid F, de la Fuente H. Immunomodulatory role of microRNAs transferred by extracellular vesicles. Biol Cell. 2015;107(3):61–77.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Ma G-J, Gu R-M, Zhu M, Wen X, Li J-T, Zhang Y-Y, et al. Plasma post-operative miR-21 expression in the prognosis of gastric cancers. Asian Pac J Cancer Prev. 2013;14(12):7551–4.PubMedCrossRefGoogle Scholar
  65. 65.
    Miao B-P, Zhang R-S, Li M, Fu Y-T, Zhao M, Liu Z-G, et al. Nasopharyngeal cancer-derived microRNA-21 promotes immune suppressive B cells. Cell Mol Immunol. 2015;12(6):750–6.PubMedCrossRefGoogle Scholar
  66. 66.
    Wang P, Zhuang L, Zhang J, Fan J, Luo J, Chen H, et al. The serum miR-21 level serves as a predictor for the chemosensitivity of advanced pancreatic cancer, and miR-21 expression confers chemoresistance by targeting FasL. Mol Oncol. 2013;7(3):334–45.PubMedCrossRefGoogle Scholar
  67. 67.
    Xiao D, Ohlendorf J, Chen Y, Taylor DD, Rai SN, Waigel S, et al. Identifying mRNA, microRNA and protein profiles of melanoma exosomes. PLoS One. 2012;7(10):e46874.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Baroni S, Romero-Cordoba S, Plantamura I, Dugo M, D’Ippolito E, Cataldo A, et al. Exosome-mediated delivery of miR-9 induces cancer-associated fibroblast-like properties in human breast fibroblasts. Cell Death Dis. 2016;7(7):e2312.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Ueda R, Kohanbash G, Sasaki K, Fujita M, Zhu X, Kastenhuber ER, et al. Dicer-regulated microRNAs 222 and 339 promote resistance of cancer cells to cytotoxic T-lymphocytes by down-regulation of ICAM-1. Proc Natl Acad Sci U S A. 2009;106(26):10746–51.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Taverna S, Amodeo V, Saieva L, Russo A, Giallombardo M, De Leo G, et al. Exosomal shuttling of miR-126 in endothelial cells modulates adhesive and migratory abilities of chronic myelogenous leukemia cells. Mol Cancer. 2014;13:169.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Zhou W, Fong MY, Min Y, Somlo G, Liu L, Palomares MR, et al. Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell. 2014;25(4):501–15.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Tominaga N, Kosaka N, Ono M, Katsuda T, Yoshioka Y, Tamura K, et al. Brain metastatic cancer cells release microRNA-181c-containing extracellular vesicles capable of destructing blood-brain barrier. Nat Commun. 2015;6:6716.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Ohshima K, Inoue K, Fujiwara A, Hatakeyama K, Kanto K, Watanabe Y, et al. Let-7 microRNA family is selectively secreted into the extracellular environment via exosomes in a metastatic gastric cancer cell line. PLoS One. 2010;5(10):e13247.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Roush S, Slack FJ. The let-7 family of microRNAs. Trends Cell Biol. 2008;18(10):505–16.PubMedCrossRefGoogle Scholar
  75. 75.
    Boyerinas B, Park S-M, Hau A, Murmann AE, Peter ME. The role of let-7 in cell differentiation and cancer. Endocr Relat Cancer. 2010;17(1):F19–36.PubMedCrossRefGoogle Scholar
  76. 76.
    Kanlikilicer P, Rashed MH, Bayraktar R, Mitra R, Ivan C, Aslan B, et al. Ubiquitous release of Exosomal tumor suppressor miR-6126 from ovarian cancer cells. Cancer Res. 2016;76(24):7194–207.PubMedCrossRefGoogle Scholar
  77. 77.
    Falcone G, Felsani A, D’Agnano I. Signaling by exosomal microRNAs in cancer. J Exp Clin Cancer Res. 2015;34:32.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Taverna S, Giallombardo M, Pucci M, Flugy A, Manno M, Raccosta S, et al. Curcumin inhibits in vitro and in vivo chronic myelogenous leukemia cells growth: a possible role for exosomal disposal of miR-21. Oncotarget. 2015;6(26):21918–33.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Taverna S, Fontana S, Monteleone F, Pucci M, Saieva L, De Caro V, et al. Curcumin modulates chronic myelogenous leukemia exosomes composition and affects angiogenic phenotype via exosomal miR-21. Oncotarget. 2016;7(21):30420–39.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Giallombardo M, Chacartegui Borras J, Castiglia M, Van Der Steen N, Mertens I, Pauwels P, et al. Exosomal miRNA Analysis in Non-small Cell Lung Cancer (NSCLC) Patients’ Plasma Through qPCR: A Feasible Liquid Biopsy Tool. J Vis Exp. 2016;(111).Google Scholar
  81. 81.
    Stahlhut C, Slack FJ. Combinatorial action of MicroRNAs let-7 and miR-34 effectively synergizes with Erlotinib to suppress non-small cell lung cancer cell proliferation. Cell Cycle. 2015;14(13):2171–80.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Janne PA, Yang JC-H, Kim D-W, Planchard D, Ohe Y, Ramalingam SS, et al. AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer. N Engl J Med. 2015;372(18):1689–99.PubMedCrossRefGoogle Scholar
  83. 83.
    Yang JC-H, Wu Y-L, Schuler M, Sebastian M, Popat S, Yamamoto N, et al. Afatinib versus cisplatin-based chemotherapy for EGFR mutation-positive lung adenocarcinoma (LUX-lung 3 and LUX-lung 6): analysis of overall survival data from two randomised, phase 3 trials. Lancet Oncol. 2015;16(2):141–51.PubMedCrossRefGoogle Scholar
  84. 84.
    Li L, Leung PS. Use of herbal medicines and natural products: an alternative approach to overcoming the apoptotic resistance of pancreatic cancer. Int J Biochem Cell Biol. 2014;53:224–36.PubMedCrossRefGoogle Scholar
  85. 85.
    Kanai M. Therapeutic applications of curcumin for patients with pancreatic cancer. World J Gastroenterol. 2014;20(28):9384–91.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Sayeed MA, Bracci M, Lucarini G, Lazzarini R, Di Primio R, Santarelli L. Regulation of microRNA using promising dietary phytochemicals: possible preventive and treatment option of malignant mesothelioma. Biomed Pharmacother. 2017;94:1197–224.PubMedCrossRefGoogle Scholar
  87. 87.
    Hannafon BN, Carpenter KJ, Berry WL, Janknecht R, Dooley WC, Ding W-Q. Exosome-mediated microRNA signaling from breast cancer cells is altered by the anti-angiogenesis agent docosahexaenoic acid (DHA). Mol Cancer. 2015;14:133.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Zhao J, Guerrero A, Kelnar K, Peltier HJ, Bader AG. Synergy between next generation EGFR tyrosine kinase inhibitors and miR-34a in the inhibition of non-small cell lung cancer. Lung Cancer. 2017;108:96–102.PubMedCrossRefGoogle Scholar
  89. 89.
    Cortez MA, Ivan C, Valdecanas D, Wang X, Peltier HJ, Ye Y, et al. PDL1 Regulation by p53 via miR-34. J Natl Cancer Inst. 2016;108(1).Google Scholar
  90. 90.
    Shin J, Xie D, Zhong X-P. MicroRNA-34a enhances T cell activation by targeting diacylglycerol kinase zeta. PLoS One. 2013;8(10):e77983.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Wang X, Li J, Dong K, Lin F, Long M, Ouyang Y, et al. Tumor suppressor miR-34a targets PD-L1 and functions as a potential immunotherapeutic target in acute myeloid leukemia. Cell Signal. 2015;27(3):443–52.PubMedCrossRefGoogle Scholar
  92. 92.
    Jiao C, Jiao X, Zhu A, Ge J, Xu X. Exosomal miR-34s panel as potential novel diagnostic and prognostic biomarker in patients with hepatoblastoma. J Pediatr Surg. 2017;52(4):618–24.PubMedCrossRefGoogle Scholar
  93. 93.
    Xu S, Wang J, Ding N, Hu W, Zhang X, Wang B, et al. Exosome-mediated microRNA transfer plays a role in radiation-induced bystander effect. RNA Biol. 2015;12(12):1355–63.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Rolfo C, Giallombardo M, Reclusa P, Sirera R, Peeters M. Exosomes in lung cancer liquid biopsies: Two sides of the same coin? Lung Cancer. 2017;104:134–135.Google Scholar
  95. 95.
    Taverna S, Giallombardo M, Gil-Bazo I, Carreca AP, Castiglia M, Chacartegui J, et al. Exosomes isolation and characterization in serum is feasible in non-small cell lung cancer patients: critical analysis of evidence and potential role in clinical practice. Oncotarget. 2016;7(19):28748–60.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Kosaka N, Yoshioka Y, Fujita Y, Ochiya T. Versatile roles of extracellular vesicles in cancer. J Clin Invest. 2016;126(4):1163–72.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Reclusa P, Taverna S, Pucci M, Durendez E, Calabuig S, Manca P, et al. Exosomes as diagnostic and predictive biomarkers in lung cancer. J Thorac Dis. 2017;9(Suppl 13):S1373-S1382.Google Scholar
  98. 98.
    Lener T, Gimona M, Aigner L, Borger V, Buzas E, Camussi G, et al. Applying extracellular vesicles based therapeutics in clinical trials - an ISEV position paper. J Extracell Vesicles. 2015;4:30087.PubMedCrossRefGoogle Scholar
  99. 99.
    Coumans FAW, Brisson AR, Buzas EI, Dignat-George F, Drees EEE, El-Andaloussi S, et al. Methodological guidelines to study extracellular vesicles. Circ Res. 2017;120(10):1632–48.PubMedCrossRefGoogle Scholar
  100. 100.
    Cordonnier M, Chanteloup G, Isambert N, Seigneuric R, Fumoleau P, Garrido C, et al. Exosomes in cancer theranostic: diamonds in the rough. Cell Adhes Migr. 2017;11(2):151–63.CrossRefGoogle Scholar
  101. 101.
    Sempere LF, Keto J, Fabbri M. Exosomal MicroRNAs in Breast Cancer towards Diagnostic and Therapeutic Applications. Cancers (Basel). 2017;9(7).Google Scholar
  102. 102.
    Eichelser C, Stuckrath I, Muller V, Milde-Langosch K, Wikman H, Pantel K, et al. Increased serum levels of circulating exosomal microRNA-373 in receptor-negative breast cancer patients. Oncotarget. 2014;5(20):9650–63.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Tominaga N, Yoshioka Y, Ochiya T. A novel platform for cancer therapy using extracellular vesicles. Adv Drug Deliv Rev. 2015;95:50–5.PubMedCrossRefGoogle Scholar
  104. 104.
    Hyenne V, Lefebvre O, Goetz JG. Going live with tumor exosomes and microvesicles. Cell Adhes Migr. 2017;11(2):173–86.CrossRefGoogle Scholar
  105. 105.
    Fontana S, Saieva L, Taverna S, Alessandro R. Contribution of proteomics to understanding the role of tumor-derived exosomes in cancer progression: state of the art and new perspectives. Proteomics. 2013;13(10–11):1581–94.PubMedGoogle Scholar
  106. 106.
    Muralidharan-Chari V, Clancy JW, Sedgwick A, D’Souza-Schorey C. Microvesicles: mediators of extracellular communication during cancer progression. J Cell Sci. 2010;123(Pt 10):1603–11.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Nedaeinia R, Manian M, Jazayeri MH, Ranjbar M, Salehi R, Sharifi M, et al. Circulating exosomes and exosomal microRNAs as biomarkers in gastrointestinal cancer. Cancer Gene Ther. 2017;24(2):48–56.PubMedCrossRefGoogle Scholar
  108. 108.
    Rolfo C, Castiglia M, Hong D, Alessandro R, Mertens I, Baggerman G, et al. Liquid biopsies in lung cancer: the new ambrosia of researchers. Biochim Biophys Acta. 2014;1846(2):539–46.PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Marzia Pucci
    • 1
    • 2
    • 3
  • Pablo Reclusa Asiáin
    • 1
    • 2
  • Elena Duréndez Sáez
    • 1
    • 4
    • 5
  • Eloisa Jantus-Lewintre
    • 4
    • 5
    • 6
  • Mahafarin Malarani
    • 1
    • 2
  • Shahanavaj Khan
    • 7
    • 8
  • Simona Fontana
    • 3
  • Aung Naing
    • 9
  • Francesco Passiglia
    • 2
  • Luis E. Raez
    • 10
  • Christian Rolfo
    • 1
    • 11
  • Simona Taverna
    • 1
    • 12
  1. 1.Phase I-Early Clinical Trials Unit, Oncology DepartmentAntwerp University Hospital (UZA)EdegemBelgium
  2. 2.Department of Surgical, Oncological and Stomatological DisciplinesUniversity of PalermoPalermoItaly
  3. 3.Department of Biopathology and Medical Biotechnologies, Section of Biology and GeneticsUniversity of PalermoPalermoItaly
  4. 4.Molecular Oncology LaboratoryGeneral University Hospital Research FoundationValenciaSpain
  5. 5.Department of BiotechnologyUniversitat Politècnica de ValènciaValenciaSpain
  6. 6.CIBERONCValenciaSpain
  7. 7.Nanomedicine & Biotechnology Research Unit, Department of Pharmaceutics, College of PharmacyKing Saud UniversityRiyadhSaudi Arabia
  8. 8.Department of BioscienceShri Ram Group of College (SRGC)MuzaffarnagarIndia
  9. 9.Department of Investigational Cancer Therapeutics, Division of Cancer MedicineThe University of Texas MD Anderson Cancer CenterHoustonUSA
  10. 10.Thoracic Oncology Program, Memorial Cancer InstituteMemorial Health Care System/Florida International UniversityMiamiUSA
  11. 11.Center for Oncological Research (CORE) Antwerp UniversityAntwerpenBelgium
  12. 12.Institute of Biomedicine and Molecular Immunology (IBIM)National Research CouncilPalermoItaly

Personalised recommendations