Skip to main content
Log in

The Treatment Landscape and New Opportunities of Molecular Targeted Therapies in Gastroenteropancreatic Neuroendocrine Tumors

  • Review Article
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

Neuroendocrine neoplasms (NENs) are a heterogeneous group of neoplasms that originate from neuroendocrine stem cells and express both neural and endocrine markers. They are found in almost every organ, and while NENs are mostly associated with slow growth, complications due to the uncontrolled secretion of active peptides, and metastatic disease, may significantly impair the quality of life and can ultimately lead to the death of affected individuals. Expanding knowledge of the genetic, epigenetic, and proteomic landscapes of NENs has led to a better understanding of their molecular pathology and consequently increased treatment options for patients. Here, we review the principal breakthroughs in NEN treatment management, owing largely to omics technologies over the last few years, current recommendations of systemic treatment, and ongoing research into the identification of predictive and response biomarkers based on molecular targeted therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Yao JC, Hassan M, Phan A, Dagohoy C, Leary C, Mares JE, et al. One hundred years after "carcinoid": epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J Clin Oncol. 2008;26(18):3063–72.

    Article  PubMed  Google Scholar 

  2. Garcia-Carbonero R, Capdevila J, Crespo-Herrero G, Diaz-Perez JA, Martinez Del Prado MP, Alonso Orduna V, et al. Incidence, patterns of care and prognostic factors for outcome of gastroenteropancreatic neuroendocrine tumors (GEP-NETs): results from the National Cancer Registry of Spain (RGETNE). Ann Oncol. 2010;21(9):1794–803.

    Article  PubMed  CAS  Google Scholar 

  3. Halfdanarson TR, Rabe KG, Rubin J, Petersen GM. Pancreatic neuroendocrine tumors (PNETs): incidence, prognosis and recent trend toward improved survival. Ann Oncol. 2008;19(10):1727–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Kulke MH, Shah MH, Benson AB, et al. Neuroendocrine tumors, version 1.2015. JNCCN. 2015;13(1):78–108.

    PubMed  CAS  Google Scholar 

  5. Oberg K. Neuroendocrine gastrointestinal tumors - a condensed overview of diagnosis and treatment. Ann Oncol. 1999;10(Suppl 2):S3–8.

    Article  PubMed  Google Scholar 

  6. Cives M, Strosberg J. An update on gastroenteropancreatic neuroendocrine tumors. Oncology. 2014;28(9):749–56. 58

    PubMed  Google Scholar 

  7. Williams ED, Sandler M. The classification of carcinoid tum ours. Lancet. 1963;1(7275):238–9.

    Article  PubMed  CAS  Google Scholar 

  8. Rindi G, Kloppel G, Couvelard A, Komminoth P, Komminoth P, Korner M, et al. TNM staging of midgut and hindgut (neuro) endocrine tumors: a consensus proposal including a grading system. Virchows Arch. 2007;451(4):757–62.

    Article  PubMed  CAS  Google Scholar 

  9. Edge SBBD, Carducci MA, et al., editors. American joint committee on cancer (AJCC) cancer staging manual. 7th ed. New York: Springer; 2009.

    Google Scholar 

  10. Bosman FT CF, Hruban RH, Theise ND. WHO Classification of Tumours of the digestive system. WHO/IARC classification of Tumours. 4th edition. 2010.

  11. Lloyd RV OR, Klöppel G, Rosai J. WHO Classification of Tumours of endocrine organs. WHO/IARC classification of Tumours. 4th edition. 2017.

  12. Frilling A, Modlin IM, Kidd M, Russell C, Breitenstein S, Salem R, et al. Recommendations for management of patients with neuroendocrine liver metastases. Lancet Oncol. 2014;15(1):e8–21.

    Article  PubMed  Google Scholar 

  13. Sorbye H, Welin S, Langer SW, Vestermark LW, Holt N, Osterlund P, et al. Predictive and prognostic factors for treatment and survival in 305 patients with advanced gastrointestinal neuroendocrine carcinoma (WHO G3): the NORDIC NEC study. Ann Oncol. 2013;24(1):152–60.

    Article  PubMed  CAS  Google Scholar 

  14. Milione M, Maisonneuve P, Spada F, Pellegrinelli A, Spaggiari P, Albarello L, et al. The Clinicopathologic heterogeneity of grade 3 Gastroenteropancreatic Neuroendocrine Neoplasms: morphological differentiation and proliferation identify different prognostic categories. Neuroendocrinology. 2017;104(1):85–93.

    Article  PubMed  CAS  Google Scholar 

  15. Karpathakis A, Dibra H, Thirlwell C. Neuroendocrine tumours: cracking the epigenetic code. Endocr Relat Cancer. 2013;20(3):R65–82.

    Article  PubMed  CAS  Google Scholar 

  16. Lawrence B, Gustafsson BI, Chan A, Svejda B, Kidd M, Modlin IM. The epidemiology of gastroenteropancreatic neuroendocrine tumors. Endocrinol Metab Clin N Am. 2011;40(1):1–18.

  17. Khasraw M, Gill A, Harrington T, Pavlakis N, Modlin I. Management of advanced neuroendocrine tumors with hepatic metastasis. J Clin Gastroenterol. 2009;43(9):838–47.

    Article  PubMed  CAS  Google Scholar 

  18. Frilling A, Sotiropoulos GC, Li J, Kornasiewicz O, Plockinger U. Multimodal management of neuroendocrine liver metastases. HPB. 2010;12(6):361–79.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kasajima A, Pavel M, Darb-Esfahani S, Noske A, Stenzinger A, Sasano H, et al. mTOR expression and activity patterns in gastroenteropancreatic neuroendocrine tumours. Endocr Relat Cancer. 2011;18(1):181–92.

    Article  PubMed  CAS  Google Scholar 

  20. Faivre S, Kroemer G, Raymond E. Current development of mTOR inhibitors as anticancer agents. Nat Rev Drug Discov. 2006;5(8):671–88.

    Article  PubMed  CAS  Google Scholar 

  21. Missiaglia E, Dalai I, Barbi S, Beghelli S, Falconi M. Della Peruta M et al. pancreatic endocrine tumors: expression profiling evidences a role for AKT-mTOR pathway. J Clin Oncol. 2010;28(2):245–55.

    Article  PubMed  CAS  Google Scholar 

  22. Russell RC, Fang C, Guan KL. An emerging role for TOR signaling in mammalian tissue and stem cell physiology. Development. 2011;138(16):3343–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Orlova KA, Crino PB. The tuberous sclerosis complex. Ann N Y Acad Sci. 2010;1184:87–105.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Jiao Y, Shi C, Edil BH, de Wilde RF, Klimstra DS, Maitra A, et al. DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science. 2011;331(6021):1199–203.

  25. Corbo V, Dalai I, Scardoni M, Barbi S, Beghelli S, Bersani S, et al. MEN1 in pancreatic endocrine tumors: analysis of gene and protein status in 169 sporadic neoplasms reveals alterations in the vast majority of cases. Endocr Relat Cancer. 2010;17(3):771–83.

    Article  PubMed  CAS  Google Scholar 

  26. Wang Y, Ozawa A, Zaman S, Prasad NB, Chandrasekharappa SC, Agarwal SK, et al. The tumor suppressor protein menin inhibits AKT activation by regulating its cellular localization. Cancer Res. 2011;71(2):371–82.

    Article  PubMed  CAS  Google Scholar 

  27. Scarpa A, Chang DK, Nones K, Corbo V, Patch AM, Bailey P, et al. Whole-genome landscape of pancreatic neuroendocrine tumours. Nature. 2017;543(7643):65–71.

    Article  PubMed  CAS  Google Scholar 

  28. Martins D, Spada F, Lambrescu I, Rubino M, Cella C, Gibelli B, et al. Predictive markers of response to Everolimus and Sunitinib in Neuroendocrine tumors. Target Oncol. 2017;12(5):611–22.

    Article  PubMed  Google Scholar 

  29. Yao JC, Pavel M, Phan AT, Kulke MH, Kulke MH, Hoosen S, et al. Chromogranin a and neuron-specific enolase as prognostic markers in patients with advanced pNET treated with everolimus. J Clin Endocrinol Metab. 2011;96(12):3741–9.

    Article  PubMed  CAS  Google Scholar 

  30. Baudin EWE, Castellano D. Correlation of PFS with early response of chromogranin a and 5-hydroxyindoleacetic acid levels in patients with advanced neuroendocrine tumors: phase III RADIANT-2 study results. Eur J Cancer. 2011;47(Suppl 1):S460.

    Article  Google Scholar 

  31. de Wilde RF, Heaphy CM, Maitra A, Meeker AK, Edil BH, Wolfgang CL, et al. Loss of ATRX or DAXX expression and concomitant acquisition of the alternative lengthening of telomeres phenotype are late events in a small subset of MEN-1 syndrome pancreatic neuroendocrine tumors. Mod Pathol. 2012;25(7):1033–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Puto LA, Reed JC. Daxx represses RelB target promoters via DNA methyltransferase recruitment and DNA hypermethylation. Genes Dev. 2008;22(8):998–1010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Marinoni I, Kurrer AS, Vassella E, Dettmer M, Rudolph T, Banz V, et al. Loss of DAXX and ATRX are associated with chromosome instability and reduced survival of patients with pancreatic neuroendocrine tumors. Gastroenterology. 2014;146(2):453–60.e5.

    Article  PubMed  CAS  Google Scholar 

  34. Hoareau-Aveilla C, Meggetto F. Crosstalk between microRNA and DNA Methylation offers potential biomarkers and targeted therapies in ALK-positive lymphomas. Cancers (Basel). 2017;9(8).

  35. Pipinikas CP, Dibra H, Karpathakis A, Feber A, Novelli M, Oukrif D, et al. Epigenetic dysregulation andpoorer prognosis in DAXX-deficient pancreatic neuroendocrine tumours. Endocr Relat Cancer. 2015;22(3):L13–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Kim H, Lee JE, Cho EJ, Liu JO, Youn HD. Menin, a tumor suppressor, represses JunD-mediated transcriptional activity by association with an mSin3A-histone deacetylase complex. Cancer Res. 2003;63(19):6135–9.

    PubMed  CAS  Google Scholar 

  37. Yang YJ, Song TY, Park J, Lee J, Lim J, Jang H, et al. Menin mediates epigenetic regulation via histone H3 lysine 9 methylation. Cell Death Dis. 2013;4:e583.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Gurung B, Feng Z, Iwamoto DV, Thiel A, Jin G, Fan CM, et al. Menin epigenetically represses hedgehog signaling in MEN1 tumor syndrome. Cancer Res. 2013;73(8):2650–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Lin W, Watanabe H, Peng S, Francis JM, Kaplan N, Pedamallu CS, et al. Dynamic epigenetic regulation by menin during pancreatic islet tumor formation. Mol Cancer Res. 2015;13(4):689–98.

    Article  PubMed  CAS  Google Scholar 

  40. Wajapeyee N, Serra RW, Zhu X, Mahalingam M, Green MR, Oncogenic BRAF. Induces senescence and apoptosis through pathways mediated by the secreted protein IGFBP7. Cell. 2008;132(3):363–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Francis J, Lin W, Rozenblatt-Rosen O, Meyerson M. The menin tumor suppressor protein is phosphorylated in response to DNA damage. PLoS One. 2011;6(1):e16119.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Fang M, Xia F, Mahalingam M, Virbasius CM, Wajapeyee N, Green MR. MEN1 is a melanoma tumor suppressor that preserves genomic integrity by stimulating transcription of genes that promote homologous recombination-directed DNA repair. Mol Cell Biol 2013;33(13):2635-47.

  43. Dalgliesh GL, Furge K, Greenman C, Chen L, Bignell G, Butler A, et al. Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature. 2010;463(7279):360–3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Robinson CM, Ohh M. The multifaceted von Hippel-Lindau tumour suppressor protein. FEBS Lett. 2014;588(16):2704–11.

    Article  PubMed  CAS  Google Scholar 

  45. Winter J, Jung S, Keller S, Gregory RI, Gregory R, Diederichs S. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol. 2009;11(3):228–34.

    Article  PubMed  CAS  Google Scholar 

  46. Roldo C, Missiaglia E, Hagan JP, Falconi M, Capelli P, Bersani S, et al. MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors are associated with distinctive pathologic features and clinical behavior. J Clin Oncol. 2006;24(29):4677–84.

    Article  PubMed  CAS  Google Scholar 

  47. Arnold CN, Sosnowski A, Schmitt-Graff A, Arnold R, Blum HE. Analysis of molecular pathways in sporadic neuroendocrine tumors of the gastro-entero-pancreatic system. Int J Cancer. 2007;120(10):2157–64.

    Article  PubMed  CAS  Google Scholar 

  48. Stefanoli M, La Rosa S, Sahnane N, Romualdi C, Pastorino R, Marando A, et al. Prognostic relevance of aberrant DNA methylation in g1 and g2 pancreatic neuroendocrine tumors. Neuroendocrinology. 2014;100(1):26–34.

    Article  PubMed  CAS  Google Scholar 

  49. House MG, Herman JG, Guo MZ, Hooker CM, Schulick RD, Lillemoe KD, et al. Aberrant hypermethylation of tumor suppressor genes in pancreatic endocrine neoplasms. Ann Surg. 2003;238(3):423–31.

  50. Perri F, Longo F, Giuliano M, Sabbatino F, Favia G, Ionna F, et al. Epigenetic control of gene expression: potential implications for cancer treatment. Crit Rev Oncol Hematol. 2017;111:166–72.

    Article  PubMed  CAS  Google Scholar 

  51. Shah MH, Binkley P, Chan K, Xiao J, Arbogast D, Collamore M, et al. Cardiotoxicity of histone deacetylase inhibitor depsipeptide in patients with metastatic neuroendocrine tumors. Clin Cancer Res. 2006;12(13):3997–4003.

    Article  PubMed  CAS  Google Scholar 

  52. Jin N, Lubner SJ, Mulkerin DL, Rajguru S, Carmichael L, Chen H, et al. A phase II trial of a Histone Deacetylase inhibitor Panobinostat in patients with low-grade Neuroendocrine tumors. Oncologist. 2016;21(7):785–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Carter CA, Degesys A, Oronsky B, Scicinski J, Caroen SZ, Oronsky AL, et al. Flushing out Carcinoid syndrome: beneficial effect of the anticancer epigenetic agent RRx-001 in a patient with a treatment-refractory Neuroendocrine tumor. Case Rep Oncol. 2015;8(3):461–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Banck MS, Kanwar R, Kulkarni AA, Boora GK, Metge F, Kipp BR, et al. The genomic landscape of small intestine neuroendocrine tumors. J Clin Invest. 2013;123(6):2502–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Cancer Genome Atlas N. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487(7407):330–7.

    Article  CAS  Google Scholar 

  56. Lollgen RM, Hessman O, Szabo E, Westin G, Akerstrom G. Chromosome 18 deletions are common events in classical midgut carcinoid tumors. Int J Cancer. 2001;92(6):812–5.

    Article  PubMed  CAS  Google Scholar 

  57. Kulke MH, Freed E, Chiang DY, Philips J, Zahrieh D, Glickman JN, et al. High-resolution analysis of genetic alterations in small bowel carcinoid tumors reveals areas of recurrent amplification and loss. Genes Chromosomes Cancer. 2008;47(7):591–603.

    Article  PubMed  CAS  Google Scholar 

  58. Cunningham JL, Diaz de Stahl T, Sjoblom T, Westin G, Dumanski JP, Janson ET. Common pathogenetic mechanism involving human chromosome 18 in familial and sporadic ileal carcinoid tumors. Genes Chromosomes Cancer. 2011;50(2):82–94.

    Article  PubMed  CAS  Google Scholar 

  59. Du Y, Ter-Minassian M, Brais L, Brooks N, Waldron A, Chan JA et al. Genetic associations with neuroendocrine tumor risk: results from a genome-wide association study. Endocr Relat Cancer 2016;23(8):587-94.

  60. Zhang HY, Rumilla KM, Jin L, Nakamura N, Stilling GA, Ruebel KH, et al. Association of DNA methylation and epigenetic inactivation of RASSF1A and beta-catenin with metastasis in small bowel carcinoid tumors. Endocrine. 2006;30(3):299–306.

    Article  PubMed  CAS  Google Scholar 

  61. Ruebel K, Leontovich AA, Stilling GA, Zhang S, Righi A, Jin L, et al. MicroRNA expression in ileal carcinoid tumors: downregulation of microRNA-133a with tumor progression. Mod Pathol. 2010;23(3):367–75.

    Article  PubMed  CAS  Google Scholar 

  62. Li SC, Essaghir A, Martijn C, Lloyd RV, Demoulin JB, Oberg K, et al. Global microRNA profiling of well-differentiated small intestinal neuroendocrine tumors. Mod Pathol. 2013;26(5):685–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Karpathakis A, Dibra H, Pipinikas C, Feber A, Morris T, Francis J et al. Prognostic impact of novel molecular subtypes of small intestinal Neuroendocrine tumor. Clin Cancer Res 2016;22(1):250-8.

  64. How-Kit A, Dejeux E, Dousset B, Renault V, Baudry M, Terris B, et al. DNA methylation profiles distinguish different subtypes of gastroenteropancreatic neuroendocrine tumors. Epigenomics. 2015;7(8):1245–58.

    Article  PubMed  CAS  Google Scholar 

  65. Andersson E, Arvidsson Y, Sward C, Hofving T, Wangberg B, Kristiansson E, et al. Expression profiling of small intestinal neuroendocrine tumors identifies subgroups with clinical relevance, prognostic markers and therapeutic targets. Mod Pathol. 2016;29(6):616–29.

    Article  PubMed  CAS  Google Scholar 

  66. Halasi M, Gartel AL. FOX(M1) news-it is cancer. Mol Cancer Ther. 2013;12(3):245–54.

  67. Zona S, Bella L, Burton MJ, Nestal de Moraes G, Lam EW, Halasi M, et al. FOXM1: an emerging master regulator of DNA damage response and genotoxic agent resistance. Biochim Biophys Acta. 2014;1839(11):1316–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Massague J. TGFbeta signalling in context. Nature Rev Mol Cell Biol. 2012;13(10):616–30.

    Article  CAS  Google Scholar 

  69. Massague J. TGFbeta in cancer. Cell. 2008;134(2):215–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Jiang J, Dingledine R. Role of prostaglandin receptor EP2 in the regulations of cancer cell proliferation, invasion, and inflammation. J Pharmacol Exp Ther. 2013;344(2):360–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Hamidi T, Cano CE, Grasso D, Garcia MN, Sandi MJ, Calvo EL, et al. Nupr1-aurora kinase a pathway provides protection against metabolic stress-mediated autophagic-associated cell death. Clin Cancer Res. 2012;18(19):5234–46.

    Article  PubMed  CAS  Google Scholar 

  72. Arvidsson Y, Johanson V, Pfragner R, Wangberg B, Nilsson O. Cytotoxic effects of Valproic acid on Neuroendocrine tumour cells. Neuroendocrinology. 2016;103(5):578–91.

    Article  PubMed  CAS  Google Scholar 

  73. Kusunoki M, Yamamura T, Ichii S, Fujita S, Nakai T, Utsunomiya J. The effects of sodium valproate on plasma somatostatin and insulin in humans. J Clin Endocrinol Metab. 1988;67(5):1060–3.

    Article  PubMed  CAS  Google Scholar 

  74. Mohammed TA, Holen KD, Jaskula-Sztul R, Mulkerin D, Lubner SJ, Schelman WR, et al. A pilot phase II study of valproic acid for treatment of low-grade neuroendocrine carcinoma. Oncologist. 2011;16(6):835–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Ilett EE, Langer SW, Olsen IH, Federspiel B, Kjaer A, Knigge U, et al. Neuroendocrine carcinomas of the Gastroenteropancreatic system: a comprehensive review. Diagnostics (Basel). 2015;5(2):119–76.

    Article  CAS  Google Scholar 

  76. Yachida S, Vakiani E, White CM, Zhong Y, Saunders T, Morgan R, et al. Small cell and large cell neuroendocrine carcinomas of the pancreas are genetically similar and distinct from well-differentiated pancreatic neuroendocrine tumors. Am J Surg Pathol. 2012;36(2):173–84.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Hijioka S, Hosoda W, Mizuno N, Hara K, Imaoka H, Bhatia V, et al. Does the WHO 2010 classification of pancreatic neuroendocrine neoplasms accurately characterize pancreatic neuroendocrine carcinomas? J Gastroenterol. 2015;50(5):564–72.

    Article  PubMed  CAS  Google Scholar 

  78. Tang LH, Basturk O, Sue JJ, Klimstra DSA. Practical approach to the classification of WHO grade 3 (G3) well-differentiated Neuroendocrine tumor (WD-NET) and poorly differentiated Neuroendocrine carcinoma (PD-NEC) of the pancreas. Am J Surg Pathol. 2016;40(9):1192–202.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Park C, Ha SY, Kim ST, Kim HC, Heo JS, Park YS, et al. Identification of the BRAF V600E mutation in gastroenteropancreatic neuroendocrine tumors. Oncotarget. 2016;7(4):4024–35.

    Article  PubMed  Google Scholar 

  80. Klempner SJ, Gershenhorn B, Tran P, Lee TK, Erlander MG, Gowen K, et al. BRAFV600E mutations in high-grade colorectal Neuroendocrine tumors may predict responsiveness to BRAF-MEK combination therapy. Cancer Discov. 2016;6(6):594–600.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Kondo NI, Ikeda Y. Practical management and treatment of pancreatic neuroendocrine tumors. Gland Surg. 2014;3(4):276–83.

    PubMed  PubMed Central  Google Scholar 

  82. Kaltsas GA, Besser GM, Grossman AB. The diagnosis and medical management of advanced neuroendocrine tumors. Endocr rev. 2004;25(3):458-511.

  83. Ferolla P. Medical treatment of advanced thoracic neuroendocrine tumors. Thorac Surg Clin. 2014;24(3):351–5.

    Article  PubMed  Google Scholar 

  84. Alonso-Gordoa T, Capdevila J, Grande EGEP-NET. Update: biotherapy for neuroendocrine tumours. Eur J Endocrinol. 2015;172(1):R31–46.

    Article  PubMed  CAS  Google Scholar 

  85. Fjallskog ML, Ludvigsen E, Stridsberg M, Oberg K, Eriksson B, Janson ET. Expression of somatostatin receptor subtypes 1 to 5 in tumor tissue and intratumoral vessels in malignant endocrine pancreatic tumors. Med Oncol. 2003;20(1):59–67.

    Article  PubMed  Google Scholar 

  86. Grozinsky-Glasberg S, Shimon I, Korbonits M, Grossman AB. Somatostatin analogues in the control of neuroendocrine tumours: efficacy and mechanisms. Endocr Relat Cancer. 2008;15(3):701–20.

    Article  PubMed  CAS  Google Scholar 

  87. Arnold R, Trautmann ME, Creutzfeldt W, Benning R, Benning M, Neuhaus C, et al. Somatostatin analogue octreotide and inhibition of tumour growth in metastatic endocrine gastroenteropancreatic tumours. Gut. 1996;38(3):430–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Oberg KE, Reubi JC, Kwekkeboom DJ, Krenning EP. Role of somatostatins in gastroenteropancreatic neuroendocrine tumor development and therapy. Gastroenterology. 2010;139(3):742–53.

  89. Viudez A. De Jesus-Acosta a, Carvalho FL, Vera R, Martin-Algarra S, Ramirez N. Pancreatic neuroendocrine tumors: challenges in an underestimated disease. Crit Rev Oncol Hematol. 2016;101:193–206.

    Article  PubMed  CAS  Google Scholar 

  90. Baudin E, Planchard D, Scoazec JY, Guigay J, Dromain C, Hadoux J, et al. Intervention in gastro-enteropancreatic neuroendocrine tumours. Best Pract Res Clin Gastroenterol. 2012;26(6):855–65.

    Article  PubMed  Google Scholar 

  91. Narayanan S, Kunz PL. Role of Somatostatin analogues in the treatment of Neuroendocrine tumors. Hematol Oncol Clin N Am. 2016;30:163–77.

    Article  Google Scholar 

  92. Pavel M, O’Toole D, Costa F, Capdevila J, Gross D, Kianmanesh R, et al. ENETS consensus guidelines update for the Management of Distant Metastatic Disease of intestinal, pancreatic, bronchial Neuroendocrine Neoplasms (NEN) and NEN of unknown primary site. Neuroendocrinology. 2016;103(2):172–85.

    Article  PubMed  CAS  Google Scholar 

  93. Rinke A, Muller HH, Schade-Brittinger C, Klose KJ, Barth P, Wied M, et al. Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: a report from the PROMID study group. J Clin Oncol. 2009;27(28):4656–63.

    Article  PubMed  CAS  Google Scholar 

  94. Laskaratos FM, Walker M, Naik K, Maragkoudakis E, Oikonomopoulos N, Grant L, et al. Predictive factors of antiproliferative activity of octreotide LAR as first-line therapy for advanced neuroendocrine tumours. Br J Cancer. 2016;115(11):1321–7.

  95. Caplin ME, Pavel M, Ruszniewski P. Lanreotide in metastatic enteropancreatic neuroendocrine tumors. N Engl J Med. 2014;371(16):1556–7.

    PubMed  Google Scholar 

  96. Krenning EP, Bakker WH, Kooij PP, Breeman WA, Oei HY, de Jong M, et al. Somatostatin receptor scintigraphy with indium-111-DTPA-D-Phe-1-octreotide in man: metabolism, dosimetry and comparison with iodine-123-Tyr-3-octreotide. J Nucl Med. 1992;33(5):652–8.

    PubMed  CAS  Google Scholar 

  97. Vezzosi D, Bennet A, Rochaix P, Courbon F, Selves J, Pradere B, et al. Octreotide in insulinoma patients: efficacy on hypoglycemia, relationships with Octreoscan scintigraphy and immunostaining with anti-sst2A and anti-sst5 antibodies. Eur J Endocrinol. 2005;152(5):757–67.

    Article  PubMed  CAS  Google Scholar 

  98. van Essen M, Sundin A, Krenning EP, Kwekkeboom DJ. Neuroendocrine tumours: the role of imaging for diagnosis and therapy. Nature Rev Endocrinol. 2014;10(2):102–14.

    Article  CAS  Google Scholar 

  99. Schmid HA. Pasireotide (SOM230): development, mechanism of action and potential applications. Mol Cell Endocrinol. 2008;286(1–2):69–74.

    Article  PubMed  CAS  Google Scholar 

  100. Kvols LK, Oberg KE, O’Dorisio TM, Mohideen P, de Herder WW, Arnold R, et al. Pasireotide (SOM230) shows efficacy and tolerability in the treatment of patients with advanced neuroendocrine tumors refractory or resistant to octreotide LAR: results from a phase II study. Endocr Relat Cancer. 2012;19(5):657–66.

    Article  PubMed  CAS  Google Scholar 

  101. Wolin EM, Hu K, Hughes G, Bouillaud E, Giannone V, Resendiz KH. Safety, tolerability, pharmacokinetics, and pharmacodynamics of a long-acting release (LAR) formulation of pasireotide (SOM230) in patients with gastroenteropancreatic neuroendocrine tumors: results from a randomized, multicenter, open-label, phase I study. Cancer Chemother Pharmacol. 2013;72(2):387–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Cives M, Kunz PL, Morse B, Coppola D, Schell MJ, Campos T, et al. Phase II clinical trial of pasireotide long-acting repeatable in patients with metastatic neuroendocrine tumors. Endocr Relat Cancer. 2015;22(1):1–9.

    Article  PubMed  CAS  Google Scholar 

  103. Jann H, Denecke T, Koch M, Pape UF, Wiedenmann B, Pavel M. Impact of octreotide long-acting release on tumour growth control as a first-line treatment in neuroendocrine tumours of pancreatic origin. Neuroendocrinology. 2013;98(2):137–43.

    Article  PubMed  CAS  Google Scholar 

  104. Meric-Bernstam F, Gonzalez-Angulo AM. Targeting the mTOR signaling network for cancer therapy. J Clin Oncol. 2009;27(13):2278–87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Yao JC, Phan AT, Chang DZ, Wolff RA, Hess K, Gupta S, et al. Efficacy of RAD001 (everolimus) and octreotide LAR in advanced low- to intermediate-grade neuroendocrine tumors: results of a phase II study. J Clin Oncol. 2008;26(26):4311–8.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Yao JC, Lombard-Bohas C, Baudin E, Kvols LK, Rougier P, Ruszniewski P, et al. Daily oral everolimus activity in patients with metastatic pancreatic neuroendocrine tumors after failure of cytotoxic chemotherapy: a phase II trial. J Clin Oncol. 2010;28(1):69–76.

    Article  PubMed  CAS  Google Scholar 

  107. Yao JC, Shah MH, Ito T, Bohas CL, Wolin EM, Van Cutsem E, et al. Everolimus for advanced pancreatic neuroendocrine tumors. N Engl J Med. 2011;364(6):514–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Yao JC, Pavel M, Lombard-Bohas E, Van Cutsem T, Kunz U, et al. Everolimus for the treatment of advanced pancreatic neuroendocrine tumors: final overall survivall results of a randomized, double-blind, placebo-controlled, multicenter phase III trial (RADIANT-3). Ann Oncol. 2014;25(suppl_4):iv394.

  109. Pavel m, Lombard-Bohas, E., Van Cutsem, D.H., Lam, T., Kunz, U., ET AL. Everolimus in patients with advanced, progressive pancreatic neurodendocrine tumors: overall survival results form the phase III RADIANT-3 study after adjusting for crossover bias. J Clin Oncol. 2015;33(15_suppl):4091.

  110. Yao JC, Fazio N, Singh S, Buzzoni R, Carnaghi C, Wolin E, et al. Everolimus for the treatment of advanced, non-functional neuroendocrine tumours of the lung or gastrointestinal tract (RADIANT-4): a randomised, placebo-controlled, phase 3 study. Lancet. 2016;387(10022):968–77.

    Article  PubMed  CAS  Google Scholar 

  111. Pavel M, Valle JW, Eriksson B, Rinke A, Caplin M, Chen J, et al. ENETS consensus guidelines for the standards of Care in Neuroendocrine Neoplasms: systemic therapy - biotherapy and novel targeted agents. Neuroendocrinology. 2017;105(3):266-80.

  112. Duran I, Kortmansky J, Singh D, Hirte H, Kocha W, Goss G, et al. A phase II clinical and pharmacodynamic study of temsirolimus in advanced neuroendocrine carcinomas. Br J Cancer. 2006;95(9):1148–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Pavel ME, Hainsworth JD, Baudin E, Peeters M, Horsch D, Winkler RE, et al. Everolimus plus octreotide long-acting repeatable for the treatment of advanced neuroendocrine tumours associated with carcinoid syndrome (RADIANT-2): a randomised, placebo-controlled, phase 3 study. Lancet. 2011;378(9808):2005–12.

    Article  PubMed  CAS  Google Scholar 

  114. Chandarlapaty S, Sawai A, Scaltriti M, Rodrik-Outmezguine V, Grbovic-Huezo O, Serra V, et al. AKT inhibition relieves feedback suppression of receptor tyrosine kinase expression and activity. Cancer Cell. 2011;19(1):58–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Hobday TJ, Qin R, Reidy-Lagunes D, Moore MJ, Strosberg J, Kaubisch A, et al. Multicenter phase II trial of Temsirolimus and Bevacizumab in pancreatic Neuroendocrine tumors. J Clin Oncol. 2015;33(14):1551–6.

    Article  PubMed  CAS  Google Scholar 

  116. Yao JC, Phan AT, Hess K, Fogelman D, Jacobs C, Dagohoy C, et al. Perfusion computed tomography as functional biomarker in randomized run-in study of bevacizumab and everolimus in well-differentiated neuroendocrine tumors. Pancreas. 2015;44(2):190–7.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  117. Kulke MH, Niedzwiecki D, Foster B, Fruth PL, Kennecke HF, et al. Randomized phase II study of everolius (E) versus everolimus plus bevacizumab (E+B) in patients (pts) with locally advanced or metastatic pancreatic neuroendocrine tumors (pNET), CALGB 80701 (alliance). J Clin Oncol. 2015;33(15_suppl):4005.

  118. Chan JA, Mayer RJ, Jackson N, Malinowski P, Regan E, Kulke MH, et al. Study of sorafenib in combination with everolimus (RAD001) in patients with advanced neuroendocrine tumors. Cancer Chemother Pharmacol. 2013;71(5):1241–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Piatek CI, Raja GL, Ji L, Gitlitz BJ, Dorff TB, Quinn DI, et al. Phase I clinical trial of temsirolimus and vinorelbine in advanced solid tumors. Cancer Chemother Pharmacol. 2014;74(6):1227–34.

    Article  PubMed  CAS  Google Scholar 

  120. Casanovas O, Hicklin DJ, Bergers G, Hanahan D. Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell. 2005;8(4):299–309.

  121. Zhang J, Francois R, Iyer R, Seshadri M, Zajac-Kaye M, Hochwald SN. Current understanding of the molecular biology of pancreatic neuroendocrine tumors. J Natl Cancer Inst. 2013;105(14):1005–17.

    Article  PubMed  CAS  Google Scholar 

  122. Kulke MH, Lenz HJ, Meropol NJ, Posey J, Ryan DP, Picus J, et al. Activity of sunitinib in patients with advanced neuroendocrine tumors. J Clin Oncol. 2008;26(20):3403–10.

    Article  PubMed  CAS  Google Scholar 

  123. Okusaka I, Nishida T, Yamao K, Igarashi H, Morizane C, Kondo S, et al. Phase II study of sunitinib (SU) in Japanese patients with unresectable or metastatic, well-differentiated pancreatic neuroendocrine tumor (NET). J Clin Oncol. 2012;30(4_suppl):381.

  124. Raymond E, Dahan L, Raoul JL, Bang YJ, Borbath I, Lombard-Bohas C, et al. Sunitinib malate for the treatment of pancreatic neuroendocrine tumors. N Engl J Med. 2011;364(6):501–13.

    Article  PubMed  CAS  Google Scholar 

  125. Ahn HK, Choi JY, Kim KM, Kim H, Choi SH, Park SH, et al. Phase II study of pazopanib monotherapy in metastatic gastroenteropancreatic neuroendocrine tumours. Br J Cancer. 2013;109(6):1414–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Grande E, Capdevila J, Castellano D, Teule A, Duran I, Fuster J, et al. Pazopanib in pretreated advanced neuroendocrine tumors: a phase II, open-label trial of the Spanish task force Group for Neuroendocrine Tumors (GETNE). Ann Oncol. 2015;26(9):1987–93.

    Article  PubMed  CAS  Google Scholar 

  127. Phan AT, Halperin DM, Chan JA, Fogelman DR, Hess KR, Malinowski P, et al. Pazopanib and depot octreotide in advanced, well-differentiated neuroendocrine tumours: a multicentre, single-group, phase 2 study. Lancet Oncol. 2015;16(6):695–703.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Garcia-Carbonero R, Rinke A, Valle JW, Fazio N, Caplin M, Gorbounova V, et al. ENETS consensus guidelines for the standards of Care in Neuroendocrine Neoplasms. systemic therapy 2: chemotherapy. Neuroendocrinology. 2017;105(3):281-94.

  129. Lamarca A, Elliott E, Barriuso J, Backen A, McNamara MG, Hubner R, et al. Chemotherapy for advanced non-pancreatic well-differentiated neuroendocrine tumours of the gastrointestinal tract, a systematic review and meta-analysis: a lost cause? Cancer Treat Rev. 2016;44:26–41.

    Article  PubMed  Google Scholar 

  130. Strosberg J, Goldman J, Costa F, Pavel M. The role of chemotherapy in well-differentiated Gastroenteropancreatic Neuroendocrine tumors. Front Horm Res. 2015;44:239–47.

    Article  PubMed  Google Scholar 

  131. Dilz LM, Denecke T, Steffen IG, Prasad V, von Weikersthal LF, Pape UF, et al. Streptozocin/5-fluorouracil chemotherapy is associated with durable response in patients with advanced pancreatic neuroendocrine tumours. Eur J Cancer. 2015;51(10):1253–62.

    Article  PubMed  CAS  Google Scholar 

  132. Clewemar Antonodimitrakis P, Sundin A, Wassberg C, Granberg D, Skogseid B, Eriksson B. Streptozocin and 5-fluorouracil for the treatment of pancreatic Neuroendocrine tumors: efficacy, prognostic factors and toxicity. Neuroendocrinology. 2016;103(3–4):345–53.

    Article  PubMed  CAS  Google Scholar 

  133. Kulke MH, Stuart K, Enzinger PC, Ryan DP, Clark JW, Muzikansky A, et al. Phase II study of temozolomide and thalidomide in patients with metastatic neuroendocrine tumors. J Clin Oncol. 2006;24(3):401–6.

    Article  PubMed  CAS  Google Scholar 

  134. Ekeblad S, Skogseid B, Dunder K, Oberg K, Eriksson B. Prognostic factors and survival in 324 patients with pancreatic endocrine tumor treated at a single institution. Clin Cancer Res. 2008;14(23):7798–80.

    Article  PubMed  CAS  Google Scholar 

  135. Fine RL, Gulati AP, Krantz BA, Moss RA, Schreibman S, Tsushima DA, et al. Capecitabine and temozolomide (CAPTEM) for metastatic, well-differentiated neuroendocrine cancers: the pancreas Center at Columbia University experience. Cancer Chemother Pharmacol. 2013;71(3):663–70.

    Article  PubMed  CAS  Google Scholar 

  136. Crespo G, Jimenez-Fonseca P, Custodio A, Lopez C, Carmona-Bayonas A, Alonso V, et al. Capecitabine and temozolomide in grade 1/2 neuroendocrine tumors: a Spanish multicenter experience. Future Oncol. 2017;13(7):615–24.

    Article  PubMed  CAS  Google Scholar 

  137. Chan JA, Blaszkowsky L, Stuart K, Zhu AX, Allen J, Wadlow R, et al. A prospective, phase 1/2 study of everolimus and temozolomide in patients with advanced pancreatic neuroendocrine tumor. Cancer. 2013;119(17):3212–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Kulke MH, Hornick JL, Frauenhoffer C, Hooshmand S, Ryan DP, Enzinger PC, et al. O6-methylguanine DNA methyltransferase deficiency and response to temozolomide-based therapy in patients with neuroendocrine tumors. Clin Cancer Res. 2009;15(1):338–45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Cives M, Ghayouri M, Morse B, Brelsford M, Black M, Rizzo A, et al. Analysis of potential response predictors to capecitabine/temozolomide in metastatic pancreatic neuroendocrine tumors. Endocr Relat Cancer. 2016;23(9):759–67.

    Article  PubMed  CAS  Google Scholar 

  140. Ceppi P, Volante M, Ferrero A, Righi L, Rapa I, Rosas R, et al. Thymidylate synthase expression in gastroenteropancreatic and pulmonary neuroendocrine tumors. Clin Cancer Res. 2008;14(4):1059–64.

    Article  PubMed  CAS  Google Scholar 

  141. Strosberg JR, Fine RL, Choi J, Nasir A, Coppola D, Chen DT, et al. First-line chemotherapy with capecitabine and temozolomide in patients with metastatic pancreatic endocrine carcinomas. Cancer. 2011;117(2):268–75.

    Article  PubMed  CAS  Google Scholar 

  142. Welin S, Sorbye H, Sebjornsen S, Knappskog S, Busch C, Oberg K. Clinical effect of temozolomide-based chemotherapy in poorly differentiated endocrine carcinoma after progression on first-line chemotherapy. Cancer. 2011;117(20):4617–22.

    Article  PubMed  CAS  Google Scholar 

  143. Fazio N, Spada F, Giovannini M. Chemotherapy in gastroenteropancreatic (GEP) neuroendocrine carcinomas (NEC): a critical view. Cancer Treat Rev. 2013;39(3):270–4.

    Article  PubMed  CAS  Google Scholar 

  144. Morizane C, Machida, N., Honma, Y., Okusaka, T., Boku, N., Kato, K., Mizusawa, J., Katayama, H., Hiraoka, N., Taniguchi, H., et al. . Randomized phase III study of etoposide plus cisplatin versus irinotecan plus cisplatin in advanced neuroendocrine carcinoma of the digestive system: A Japan clinical oncology group study (JCOG1213). J Clin Oncol. 2015;33 (Suppl.) Abstract: TPS4143.

  145. Hentic O, Hammel P, Couvelard A, Rebours V, Zappa M, Palazzo M, et al. FOLFIRI regimen: an effective second-line chemotherapy after failure of etoposide-platinum combination in patients with neuroendocrine carcinomas grade 3. Endocr Relat Cancer. 2012;19(6):751–7.

    Article  PubMed  CAS  Google Scholar 

  146. Hadoux J, Malka D, Planchard D, Scoazec JY, Caramella C, Guigay J, et al. Post-first-line FOLFOX chemotherapy for grade 3 neuroendocrine carcinoma. Endocr Relat Cancer. 2015;22(3):289–98.

    Article  PubMed  CAS  Google Scholar 

  147. Bushnell DL Jr, O’Dorisio TM, O’Dorisio MS, Menda Y, Hicks RJ, Van Cutsem E, et al. 90Y-edotreotide for metastatic carcinoid refractory to octreotide. J Clin Oncol. 2010;28(10):1652–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Kwekkeboom DJ, de Herder WW, Kam BL, van Eijck CH, van Essen M, Kooij PP, et al. Treatment with the radiolabeled somatostatin analog [177 Lu-DOTA 0,Tyr3]octreotate: toxicity, efficacy, and survival. J Clin Oncol. 2008;26(13):2124–30.

    Article  PubMed  CAS  Google Scholar 

  149. Kwekkeboom DJ, Krenning EP. Peptide receptor radionuclide therapy in the treatment of Neuroendocrine tumors. Hematology/oncology clinics of North America. 2016;30(1):179-91. 152. Strosberg J, el-Haddad G, Wolin E, Hendifar a, Yao J, Chasen B et al. phase 3 trial of 177Lu-Dotatate for Midgut Neuroendocrine tumors. N Engl J Med. 2017;376(2):125–35.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Brabander T, Van der Zwan WA, Teunissen JJ, Kam BLR, Feelders RA, de Herder WW, et al. Long-term efficacy, survival and safety of [177Lu-DOTA0,Tyr3]octreotate in patients with gastroenteropancreatic and bronchial neuroendocrine tumors. Clin Cancer Res. 2017;23(16):4617–24.

    Article  PubMed  CAS  Google Scholar 

  151. Hubble D, Kong G, Michael M, Johnson V, Ramdave S, Hicks RJ. 177Lu-octreotate, alone or with radiosensitising chemotherapy, is safe in neuroendocrine tumour patients previously treated with high-activity 111In-octreotide. Eur J Nucl Med Mol Imaging. 2010;37(10):1869–75.

    Article  PubMed  CAS  Google Scholar 

  152. Claringbold PG, Price RA, Turner JH. Phase I-II study of radiopeptide 177Lu-octreotate in combination with capecitabine and temozolomide in advanced low-grade neuroendocrine tumors. Cancer Biother Radiopharm. 2012;27(9):561–9.

    Article  PubMed  CAS  Google Scholar 

  153. Claringbold PG, Turner JH, Claringbold PG. Price Ra Fau - turner JH, turner JH, Hubble D et al. NeuroEndocrine tumor therapy with Lutetium-177-octreotate and Everolimus (NETTLE): a phase I study. Cancer Biother Radiopharm. 2015;30(6):261–9.

    Article  PubMed  CAS  Google Scholar 

  154. Modlin IM, Kidd M, Bodei L, Drozdov I, Aslanian H. The clinical utility of a novel blood-based multi-transcriptome assay for the diagnosis of neuroendocrine tumors of the gastrointestinal tract. The. Am J Gastroenterol. 2015;110(8):1223–32.

    Article  PubMed  CAS  Google Scholar 

  155. Cwikla JB, Bodei L, Kolasinska-Cwikla A, Sankowski A, Modlin IM, Kidd M. Circulating transcript analysis (NETest) in GEP-NETs treated with Somatostatin analogs defines therapy. J Clin Endocrinol Metab. 2015;100(11):E1437–45.

    Article  PubMed  CAS  Google Scholar 

  156. Pavel M, Jann H, Prasad V, Drozdov I, Modlin IM, Kidd MNET. Blood transcript analysis defines the crossing of the clinical Rubicon: when stable disease becomes progressive. Neuroendocrinology. 2017;104(2):170–82.

    Article  PubMed  CAS  Google Scholar 

  157. Bodei L, Kidd M, Modlin IM, Prasad V, Severi S, Ambrosini V, et al. Gene transcript analysis blood values correlate with (6)(8)Ga-DOTA-somatostatin analog (SSA) PET/CT imaging in neuroendocrine tumors and can define disease status. Eur J Nucl Med Mol Imaging. 2015;42(9):1341–52.

    Article  PubMed  CAS  Google Scholar 

  158. Khan MS, Kirkwood AA, Tsigani T, Lowe H, Goldstein R, Hartley JA, et al. Early changes in circulating tumor cells are associated with response and survival following treatment of metastatic Neuroendocrine Neoplasms. Clin Cancer Res. 2016;22(1):79–85.

    Article  PubMed  CAS  Google Scholar 

  159. Roncati L, Manenti A, Farinetti A, Pusiol T. The association between tumor-infiltrating lymphocytes (TILs) and metastatic course in neuroendocrine neoplasms. Surgery. 2016;160(6):1709.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaume Capdevila.

Ethics declarations

Funding

No funding was used to prepare this article.

Conflict of Interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amair-Pinedo, F., Matos, I., Saurí, T. et al. The Treatment Landscape and New Opportunities of Molecular Targeted Therapies in Gastroenteropancreatic Neuroendocrine Tumors. Targ Oncol 12, 757–774 (2017). https://doi.org/10.1007/s11523-017-0532-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-017-0532-3

Navigation