Controlling infectious disease outbreaks: A deterministic allocation-scheduling model with multiple discrete resources

  • Nikolaos Rachaniotis
  • Thomas K. Dasaklis
  • Costas Pappis
Article

Abstract

Infectious disease outbreaks occurred many times in the past and are more likely to happen in the future. In this paper the problem of allocating and scheduling limited multiple, identical or non-identical, resources employed in parallel, when there are several infected areas, is considered. A heuristic algorithm, based on Shih’s (1974) and Pappis and Rachaniotis’ (2010) algorithms, is proposed as the solution methodology. A numerical example implementing the proposed methodology in the context of a specific disease outbreak, namely influenza, is presented. The proposed methodology could be of significant value to those drafting contingency plans and healthcare policy agendas.

Keywords

Resource allocation healthcare management epidemics heuristics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

We would like to thank the two anonymous referees for their help to improve the quality of this paper.

References

  1. [1]
    Aleman, D. M., Wibisono, T. G. & Schwartz, B. (2011). A nonhomogeneous agent-based simulation approach to modeling the spread of disease in a pandemic outbreak. Interfaces, 41(3): 301–315.CrossRefGoogle Scholar
  2. [2]
    Alexander, M. E., Moghadas, S. M., Röst, G. & Wu, J. (2008). A delay differential model for pandemic influenza with antiviral treatment. Bulletin of Mathematical Biology, 70(2): 382–397.MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    Boëlle, P. Y., Ansart, S., Cori, A. & Valleron, A. J. (2011). Transmission parameters of the A/H1N1 (2009) influenza virus pandemic: a review. Influenza and other Respiratory Viruses, 5(5): 306–316.CrossRefGoogle Scholar
  4. [4]
    Brandeau, M. (2005). Allocating resources to control infectious diseases. Operations Research and Health Care, Vol. 70: 443–464.CrossRefGoogle Scholar
  5. [5]
    Bretthauer, K. & Shetty, B. (1995). The nonlinear resource allocation problem. Operations Research, 43(4): 670–683.MathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    Burke, D. S., Epstein, J. M., Cummings, D. A. T., Parker, J. I., Cline, K. C., Singa, R. M. & Chakravarty, S. (2006). Individual-based computational modeling of smallpox epidemic control strategies. Academic Emergency Medicine, 13(11): 1142–1149.CrossRefGoogle Scholar
  7. [7]
    Carr, S. & Roberts, S. (2010). Planning for infectious disease outbreaks: a geographic disease spread, clinic location, and resource allocation simulation. Baltimore, MD, 2171–2184.Google Scholar
  8. [8]
    Carrat, F., Luong, J., Lao, H., Sallé, A. V., Lajaunie, C. & Wackernagel, H. (2006). A ‘small-world-like’ model for comparing interventions aimed at preventing and controlling influenza pandemics. BMC Medicine, 4(1):26.CrossRefGoogle Scholar
  9. [9]
    Chowell, G., Ammon, C. E., Hengartner, N. W. & Hyman, J. M. (2006). Transmission dynamics of the great influenza pandemic of 1918 in Geneva, Switzerland: assessing the effects of hypothetical interventions. Journal of Theoretical Biology, 241(2): 193–204.MathSciNetCrossRefGoogle Scholar
  10. [10]
    Chowell, G., Viboud, C., Wang, X., Bertozzi, S. M. & Miller, M. A. (2009). Adaptive vaccination strategies to mitigate pandemic influenza: Mexico as a case study. PLoS ONE, 4(12): e8164: 1-9.CrossRefGoogle Scholar
  11. [11]
    Ciofi degli Atti, M. L., Merler, S., Rizzo, C., Ajelli, M., Massari, M., Manfredi, P., Furlanello, C., Tomba, G. S. & Iannelli, M. (2008). Mitigation measures for pandemic influenza in Italy: an individual based model considering different scenarios. PLoS ONE, 3(3):811–827.CrossRefGoogle Scholar
  12. [12]
    Coburn, B. J., Wagner, B. G. & Blower, S. (2009). Modeling influenza epidemics and pandemics: insights into the future of swine flu (H1N1). BMC Medicine, 7.Google Scholar
  13. [13]
    Colizza, V., Barrat, A., Barthelemy, M., Valleron, A. J. & Vespignani, A. (2007). Modeling the worldwide spread of pandemic influenza: baseline case and containment interventions. PloS Medicine, 4(1): 0095–0110.CrossRefGoogle Scholar
  14. [14]
    Cooper, B. S., Pitman, R. J., Edmunds, W. J. & Gay, N. J. 2006). Delaying the international spread of pandemic influenza. PLoS Medicine, 3(6): 0845–0855.CrossRefGoogle Scholar
  15. [15]
    Cruz-Aponte, M., McKiernan, E. C. & Herrera-Valdez, M. A. (2011). Mitigating effects of vaccination on influenza outbreaks given constraints in stockpile size and daily administration capacity. BMC Infectious Diseases, 11.Google Scholar
  16. [16]
    Das, T. K., Savachkin, A. & Zhu, Y. (2008). A large-scale simulation model of pandemic influenza outbreaks for development of dynamic mitigation strategies. IIE Transactions (Institute of Industrial Engineers), 40(9): 893–905.Google Scholar
  17. [17]
    Department of Health. (2005). Smallpox mass vaccination -an operational planning framework. Department of Health, Scottish Government. Retrieved June 11, 2013 from http://www.scotland.gov.uk/Publications/2005/09/20160232/02428.Google Scholar
  18. [18]
    Epstein, J. M., Goedecke, D. M., Yu, F., Morris, R. J., Wagener, D. K. & Bobashev, G. V. (2007). Controlling pandemic flu: the value of international air travel restrictions. PLoS ONE, 2(5): e401:1-11.CrossRefGoogle Scholar
  19. [19]
    Eubank, S., Guclu, H., Kumar, V. S. A., Marathe, M. V., Srinivasan, A., Toroczkai, Z. & Wang, N. (2004). Modelling disease outbreaks in realistic urban social networks. Nature, 429(6988): 180–184.CrossRefGoogle Scholar
  20. [20]
    Ferguson, N., Keeling, M., Edmunds, W., Gani, R., Grenfell, B., Anderson, R. & Leach, S. (2003). Planning for smallpox outbreaks. Nature, 425(6959): 681–685.CrossRefGoogle Scholar
  21. [21]
    Ferguson, N. M., Cummings, D. A. T., Cauchemez, S., Fraser, C., Riley, S., Meeyai, A., Iamsirithaworn, S. & Burke, D. S. (2005). Strategies for containing an emerging influenza pandemic in Southeast Asia. Nature, 437(7056): 209–214.CrossRefGoogle Scholar
  22. [22]
    Flahault, A., Vergu, E., Coudeville, L. & Grais, R. F. (2006). Strategies for containing a global influenza pandemic. Vaccine, 24(44-46): 6751–6755.CrossRefGoogle Scholar
  23. [23]
    Glasser, J., Taneri, D., Feng, Z., Chuang, J. H., Tüll, P., Thompson, W., McCauley, M. M. & Alexander, J. (2010). Evaluation of targeted influenza vaccination strategies via population modeling. PLoS ONE, 5(9): 1–8.CrossRefGoogle Scholar
  24. [24]
    Hall, I. M., Egan, J. R., Barrass, I., Gani, R. & Leach, S. (2007). Comparison of smallpox outbreak control strategies using a spatial metapopulation model. Epidemiology and Infection, 135(7): 1133–1144.CrossRefGoogle Scholar
  25. [25]
    Hansen, E. & Day, T. (2011). Optimal control of epidemics with limited resources. Journal of Mathematical Biology, 62(3): 423–451.MathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    Hethcote, H. (2000). The mathematics of infectious diseases. SIAM Review, 42(4): 599–653.MathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    Hollingsworth, T. D., Klinkenberg, D., Heesterbeek, H. & Anderson, R. M. (2011). Mitigation strategies for pandemic influenza a: balancing conflicting policy objectives. PLoS Computational Biology, 7(2): e1001076: 1-11.MathSciNetCrossRefGoogle Scholar
  28. [28]
    Hupert, N., Cuomo, J., Callahan, M., Mushlin, A. & Morse, S. (2004). Community-Based Mass Prophylaxis: A Planning Guide for Public Health Preparedness. Prepared by Weill Medical College of Cornell University, Department of Public Health under Contract No. 290-02-0013-3. AHRQ Pub No. 04-0044. Rockville, MD: Agency for Healthcare Research and Quality. Retrieved June 08, 2010 from http://archive.ahrq.gov/downloads/pub/biotertools/cbmprophyl.pdf.Google Scholar
  29. [29]
    Ibaraki, T. & Katoh, N. (1988). Resource Allocation Problems: Algorithmic Approaches. The MIT Press.MATHGoogle Scholar
  30. [30]
    Kaplan, E. H., Craft, D. L. & Wein, L. M. (2002). Emergency response to a smallpox attack: the case for mass vaccination. Proceedings of the National Academy of Sciences of the United States of America, 99(16): 10935–10940.CrossRefGoogle Scholar
  31. [31]
    Kaplan, E. H., Craft, D. L. & Wein, L. M. (2003). Analyzing bioterror response logistics: the case of smallpox. Mathematical Biosciences, 185(1): 33–72.MathSciNetCrossRefMATHGoogle Scholar
  32. [32]
    Koyuncu, M. & Erol, R. (2010). Optimal resource allocation model to mitigate the impact of pandemic influenza: a case study for Turkey. Journal of Medical Systems, 34(1): 61–70.CrossRefGoogle Scholar
  33. [33]
    Krumkamp, R., Kretzschmar, M., Rudge, J. W., Ahmad, A., Hanvoravongchai, P., Westenhoefer, J., Stein, M., Putthasri, W. & Coker, R. (2011). Health service resource needs for pandemic influenza in developing countries: a linked transmission dynamics, interventions and resource demand model. Epidemiology and Infection, 139(1): 59–67.CrossRefGoogle Scholar
  34. [34]
    Lee, B. Y., Brown, S. T., Korch, G. W., Cooley, P. C., Zimmerman, R. K., Wheaton, W. D., Zimmer, S. M., Grefenstette, J. J., Bailey, R. R., Assi, T. M. & Burke, D. S. (2010). A computer simulation of vaccine prioritization, allocation, and rationing during the 2009 H1N1 influenza pandemic. Vaccine, 28(31): 4875–4879.CrossRefGoogle Scholar
  35. [35]
    Lee, S., Golinski, M. & Chowell, G. (2012). Modeling optimal age-specific vaccination strategies against pandemic influenza. Bulletin of Mathematical Biology, 74(4): 958–980.MathSciNetCrossRefMATHGoogle Scholar
  36. [36]
    Matrajt, L., Halloran, M. E. & Longini, I. M. (2013). Optimal vaccine allocation for the early mitigation of pandemic influenza. PLoS Computational Biology, 9(3): e1002964: 1-15.MathSciNetCrossRefGoogle Scholar
  37. [37]
    Matrajt, L. & Longini, I. M. (2010). Optimizing vaccine allocation at different points in time during an epidemic. PLoS ONE, 5(11): e13767: 1-11.CrossRefGoogle Scholar
  38. [38]
    Mbah, M. L. N. & Gilligan, C. A. (2011). Resource allocation for epidemic control in metapopulations. PLoS ONE, 6(9): e24577:1-10.CrossRefGoogle Scholar
  39. [39]
    Medlock, J. & Galvani, A. P. (2009). Optimizing influenza vaccine distribution. Science, 325(5948): 1705–1708.CrossRefGoogle Scholar
  40. [40]
    Meyers, L., Galvani, A. & Medlock, J. (2009). Optimizing allocation for a delayed influenza vaccination campaign. PLoS Currents (DEC).Google Scholar
  41. [41]
    Mjelde, K. (1978). Discrete resource allocation by a branch and bound method. Journal of the Operational Research Society, 29(10): 1021–1023.CrossRefMATHGoogle Scholar
  42. [42]
    Mylius, S. D., Hagenaars, T. J., Lugnér, A. K. & Wallinga, J. (2008). Optimal allocation of pandemic influenza vaccine depends on age, risk and timing. Vaccine, 26(29-30): 3742–3749.CrossRefGoogle Scholar
  43. [43]
    Nishiura, H. & Chowell, G. (2009). The effective reproduction number as a prelude to statistical estimation of time-dependent epidemic trends. In G. Chowell, J. Hyman, L. A. Bettencourt & C. Castillo-Chavez (eds.), Mathematical and Statistical Estimation Approaches in Epidemiology: 103–121, Springer Netherlands.CrossRefGoogle Scholar
  44. [44]
    Ompad, D. C., Galea, S. & Vlahov, D. (2006). Distribution of influenza vaccine to high-risk groups. Epidemiologic Reviews, 28(1): 54–70.CrossRefGoogle Scholar
  45. [45]
    Pappis, C. P. & Rachaniotis, N. P. (2010). Scheduling in a multi-processor environment with deteriorating job processing times and decreasing values: the case of forest fires. Journal of Heuristics, 16(4): 617–632.CrossRefMATHGoogle Scholar
  46. [46]
    R Core Team. (2013). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.Google Scholar
  47. [47]
    Rachaniotis, N. P., Dasaklis, T. K. & Pappis, C. P. (2012). A deterministic resource scheduling model in epidemic control: a case study. European Journal of Operational Research, 216(1): 225–231.MathSciNetCrossRefGoogle Scholar
  48. [48]
    Riley, S., Fraser, C., Donnelly, C. A., Ghani, A. C., Abu-Raddad, L. J., Hedley, A. J., Leung, G. M., Ho, L. M., Lam, T. H., Thach, T. Q., Chau, P., Chan, K. P., Lo, S. V., Leung, P. Y., Tsang, T., Ho, W., Lee, K. H., Lau, E. M. C., Ferguson, N. M. & Anderson, R. M. (2003). Transmission dynamics of the etiological agent of SARS in Hong Kong: impact of public health interventions. Science, 300(5627): 1961–1966.CrossRefGoogle Scholar
  49. [49]
    Samsuzzoha, M., Singh, M. & Lucy, D. (2012). A numerical study on an influenza epidemic model with vaccination and diffusion. Applied Mathematics and Computation, 219(1): 122–141.MathSciNetCrossRefMATHGoogle Scholar
  50. [50]
    Samsuzzoha, M., Singh, M. & Lucy, D. (2013). Uncertainty and sensitivity analysis of the basic reproduction number of a vaccinated epidemic model of influenza. Applied Mathematical Modelling, 37(3): 903–915.MathSciNetCrossRefMATHGoogle Scholar
  51. [51]
    Sander, B., Nizam, A., Garrison Jr, L. P., Postma, M. J., Halloran, M. E. & Longini, I. M. (2009). Economic evaluation of influenza pandemic mitigation strategies in the United States using a stochastic microsimulation transmission model. Value in Health, 12(2): 226–233.CrossRefGoogle Scholar
  52. [52]
    Shih, W. (1974). A new application of incremental analysis in resource allocations. Operational Research Quarterly, 25(4): 587–597.CrossRefGoogle Scholar
  53. [53]
    Shih, W. (1977). Branch and bound procedure for a class of discrete resource allocation problems with several constraints. Operational Research Quarterly, 28(2): 439–451.CrossRefMATHGoogle Scholar
  54. [54]
    Stein, M. L., Rudge, J. W., Coker, R., Weijden, C., Krumkamp, R., Hanvoravongchai, P., Chavez, I., Putthasri, W., Phommasack, B., Adisasmito, W., Touch, S., Sat, L. M., Hsu, Y. C., Kretzschmar, M. & Timen, A. (2012). Development of a resource modelling tool to support decision makers in pandemic influenza preparedness: the AsiaFluCap Simulator. BMC Public Health: 870.Google Scholar
  55. [55]
    Tuite, A. R., Fisman, D. N., Kwong, J. C. & Greer, A. L. (2010). Optimal pandemic influenza vaccine allocation strategies for the Canadian population. PLoS ONE, 5(5): e10520:1-11.CrossRefGoogle Scholar
  56. [56]
    Uribe-Sánchez, A., Savachkin, A., Santana, A., Prieto-Santa, D. & Das, T. K. (2011). A predictive decision-aid methodology for dynamic mitigation of influenza pandemics. OR Spectrum, 33(3): 751–786.MathSciNetCrossRefGoogle Scholar
  57. [57]
    Van Der Weijden, C. P., Stein, M. L., Jacobi, A. J., Kretzschmar, M. E. E., Reintjes, R., van Steenbergen, J. E. & Timen, A. (2013). Choosing pandemic parameters for pandemic preparedness planning: a comparison of pandemic scenarios prior to and following the influenza A(H1N1) 2009 pandemic. Health Policy, 109(1): 52–62.CrossRefGoogle Scholar
  58. [58]
    Wallinga, J., Van Bovena, M. & Lipsitch, M. (2010). Optimizing infectious disease interventions during an emerging epidemic. Proceedings of the National Academy of Sciences of the United States of America, 107(2): 923–928.CrossRefGoogle Scholar
  59. [59]
    Wichmann, O., Stöcker, P., Poggensee, G., Altmann, D., Walter, D., Hellenbrand, W., Krause, G. & Eckmanns, T. (2010). Pandemic influenza A(H1N1) 2009 breakthrough infections and estimates of vaccine effectiveness in Germany 2009-2010. Eurosurveillance, 15(18): 1–4.Google Scholar
  60. [60]
    Yaesoubi, R. & Cohen, T. (2011). Dynamic health policies for controlling the spread of emerging infections: influenza as an example. PLoS ONE, 6(9): e24043:1-11.CrossRefGoogle Scholar
  61. [61]
    Yang, Y., Atkinson, P. M. & Ettema, D. (2011). Analysis of CDC social control measures using an agent-based simulation of an influenza epidemic in a city. BMC Infectious Diseases, 11.Google Scholar
  62. [62]
    Yarmand, H., Ivy, J. S., Denton, B. & Lloyd, A. L. (2014). Optimal two-phase vaccine allocation to geographically different regions under uncertainty. European Journal of Operational Research, 233(1): 208–219.MathSciNetCrossRefMATHGoogle Scholar
  63. [63]
    Zhou, L. & Fan, M. (2012). Dynamics of an SIR epidemic model with limited medical resources revisited. Nonlinear Analysis: Real World Applications, 13(1): 312–324.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Systems Engineering Society of China and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Nikolaos Rachaniotis
    • 1
  • Thomas K. Dasaklis
    • 2
  • Costas Pappis
    • 2
  1. 1.Department of EconomicsDemocritus University of ThraceKomotiniGreece
  2. 2.Department of Industrial Management and TechnologyUniversity of PiraeusPiraeusGreece

Personalised recommendations