Optimizing ANFIS using simulated annealing algorithm for classification of microarray gene expression cancer data


In the medical field, successful classification of microarray gene expression data is of major importance for cancer diagnosis. However, due to the profusion of genes number, the performance of classifying DNA microarray gene expression data using statistical algorithms is often limited. Recently, there has been an important increase in the studies on the utilization of artificial intelligence methods, for the purpose of classifying large-scale data. In this context, a hybrid approach based on the adaptive neuro-fuzzy inference system (ANFIS), the fuzzy c-means clustering (FCM), and the simulated annealing (SA) algorithm is proposed in this study. The proposed method is applied to classify five different cancer datasets (i.e., lung cancer, central nervous system cancer, brain cancer, endometrial cancer, and prostate cancer). The backpropagation algorithm, hybrid algorithm, genetic algorithm, and the other statistical methods such as Bayesian network, support vector machine, and J48 decision tree are used to compare the proposed approach’s performance to other algorithms. The results show that the performance of training FCM-based ANFIS using SA algorithm for classifying all the cancer datasets becomes more successful with the average accuracy rate of 96.28% and the results of the other methods are also satisfactory. The proposed method gives more effective results than the others for classifying DNA microarray cancer gene expression data.

Graphical abstract

Basic structure of proposed method

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Schulze A, Downward J (2001) Navigating gene expression using microarrays -- a technology review. Nat Cell Biol 3(8):190–195. https://doi.org/10.1038/35087138

    CAS  Article  Google Scholar 

  2. 2.

    Sharma A, Imoto S, Miyano S, Sharma V (2012) Null space based feature selection method for gene expression data. Int J Mach Learn Cybern 3(4):269–276. https://doi.org/10.1007/s13042-011-0061-9

    Article  Google Scholar 

  3. 3.

    Saeys Y, Inza I, Larranaga P (2007) A review of feature selection techniques in bioinformatics. BIOINFORMATICS 23(19):2507–2517. https://doi.org/10.1093/bioinformatics/btm344

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Guo S, Guo D, Chen L, Jiang Q (2016) A centroid-based gene selection method for microarray data classification. J Theor Biol 400:32–41. https://doi.org/10.1016/j.jtbi.2016.03.034

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Dagliyan O, Yuksektepe F, Kavakli H, Turkay M (2011) Optimization based tumor classification from microarray gene expression data. PLoS One 6(2):e14579. https://doi.org/10.1371/journal.pone.0014579

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Tan AC, Gilbert D (2003) Ensemble machine learning on gene expression data for cancer classification. Appl Bioinforma 2(3):75–83

    Google Scholar 

  7. 7.

    Pirooznia M, Yang JY, Yang MQM, Deng Y (2008) A comparative study of different machine learning methods on microarray gene expression data. BMC Genomics 9(1):1–13. https://doi.org/10.1186/1471-2164-9-S1-S13

    Article  Google Scholar 

  8. 8.

    Sarhan AM (2009) Cancer classification based on microarray gene expression data using DCT and ANN. J Theor Appl Inform Technol 6(2):208–216

    Google Scholar 

  9. 9.

    Loganathan C, Girija KV (2013) Cancer classification using adaptive neuro fuzzy inference system with runge kutta learning. Int J Comput Appl 79(4):46–50

    Google Scholar 

  10. 10.

    AnandaKumar K, Punithavalli M (2011) Efficient cancer classification using fast adaptive neuro-fuzzy inference system (FANFIS) based on statistical techniques. Int J Adv Comput Sci Appl Spec Issue Artif Intell:132–137. https://doi.org/10.14569/SpecialIssue.2011.010321

  11. 11.

    Haznedar B, Arslan MT, Kalinli A (2017) Training ANFIS structure using genetic algorithm for liver cancer classification based on microarray gene expression data. Sakarya Univ J Sci 21:54–62. https://doi.org/10.12739/NWSA.2018.13.4.2A0159

    Article  Google Scholar 

  12. 12.

    Simon D (2002) Training fuzzy systems with the extended Kalman filter. Fuzzy Sets Syst 132:189–199. https://doi.org/10.1016/S0165-0114(01)00241-X

    Article  Google Scholar 

  13. 13.

    Canayaz M (2019) Training ANFIS system with moth-flame optimization algorithm. Int J Intell Syst Appl Eng 7(3):133–144

    Article  Google Scholar 

  14. 14.

    Jinthanasatian P, Auephanwiriyakul S, Theera-Umpon N (2017) "Microarray data classification using neuro-fuzzy classifier with firefly algorithm," 2017 IEEE Symposium Series on Computational Intelligence (SSCI), Honolulu, HI, pp. 1-6, doi https://doi.org/10.1109/SSCI.2017.8280967

  15. 15.

    Thangavel K, Kaja Mohideen A (2016) "Mammogram classification using ANFIS with ant colony optimization based learning," Annual Convention of the Computer Society of India. Springer, Singapore

    Google Scholar 

  16. 16.

    Karaboga D, Kaya E (2020) Estimation of number of foreign visitors with ANFIS by using ABC algorithm. Soft Comput 24:7579–7591

    Article  Google Scholar 

  17. 17.

    Gordon GJ, Jensen RV, Hsiao LL, Gullans SR, Blumenstock JE, Ramaswamy S, Richards WG, Sugarbaker DJ, Bueno R (2002) Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma. Cancer Res 62:4963–4967

    CAS  PubMed  Google Scholar 

  18. 18.

    Pomeroy SL, Tamayo P, Gaasenbeek M, Sturla LM, Angelo M, McLaughlin ME, Kim JYH, Goumnerova LC, Black PM, Lau C, Allen JC, Zagzag D, Olson JM, Curran T, Wetmore C, Biegel JA, Poggio T, Mukherjee S, Rifkin R, Califano A, Stolovitzky G, Louis DN, Mesirov JP, Lander ES, Golub TR (2002) Gene expression-based classification and outcome prediction of central nervous system embryonal tumors. Nature 415:436–442

    CAS  Article  Google Scholar 

  19. 19.

    Nutt CL, Mani DR, Betensky RA, Tamayo P, Cairncross JG, Ladd C, Pohl U, Hartmann C, McLaughlin M, Batchelor TT, Black PM, von Deimling A, Pomeroy SL, Golub TR, Louis DN (2003) Gene expression-based classification of malignant gliomas correlates better with survival than histological classification. Cancer Res 63:1602–1607

    CAS  PubMed  Google Scholar 

  20. 20.

    Risinger JI, Maxwell GL, Chandramouli GV, Jazaeri A, Aprelikova O, Patterson T, Berchuck A, Barrett JC (2003) Advances in brief microarray analysis reveals distinct gene expression profiles among different histologic types of endometrial cancer. Cancer Res 63:6–11

    CAS  PubMed  Google Scholar 

  21. 21.

    Singh D, Febbo PG, Ross K, Jackson DG, Manola J, Ladd C, Tamayo P, Renshaw AA, D'Amico AV, Richie JP, Lander ES, Loda M, Kantoff PW, Golub TR, Sellers WR (2002) Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 1:203–209. https://doi.org/10.1016/s1535-6108(02)00030-2

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Kumar V, Minz S (2014) Feature selection: a literature review. Smart Comput Rev 4(3):211–229. https://doi.org/10.6029/smartcr.2014.03.007

    Article  Google Scholar 

  23. 23.

    Bontempi G, Meyer PE (2010) “Causal filter selection in microarray data,” In Proc. of the 27th international conference on machine learning, pp. 95-102

  24. 24.

    Rui Y, Huang TS, Chang S (1999) Image retrieval: Current techniques, promising directions and open issues. Visual Commun Image Represent 10(4):39–62. https://doi.org/10.1006/jvci.1999.0413

    Article  Google Scholar 

  25. 25.

    Sharma A, Imoto S, Miyano S (2012) A filter based feature selection algorithm using null space of covariance matrix for DNA microarray gene expression data. Curr Bioinforma 7(3). https://doi.org/10.2174/157489312802460802

  26. 26.

    Queiros CE, Gelsema ES(1984) “On feature selection,” In Proc. of the Seventh International Conference on Pattern Recognition, pp. 128-130

  27. 27.

    Yu L, Liu H (2003) “Feature selection for high-dimensional data: a fast correlation-based filter solution,” Proceedings of the Twentieth International Conference on Machine Learning (ICML-2003), Washington DC

  28. 28.

    Wanderley MF, Gardeux V, Natowicz R, Braga A (2013) “GA-KDE-Bayes: an evolutionary wrapper method based on non-parametric density estimation applied to bioinformatics problems”, ESANN 2013 proceedings, European Symposium on Artificial Neural Networks. Computational Intelligence and Machine Learning, Bruges (Belgium)

    Google Scholar 

  29. 29.

    Hall MA, Smith LA (1998) “Practical feature subset selection for machine learning,” In Proceedings of the 21st Australasian Computer Science Conference ACSC’98, pp. 181-191

  30. 30.

    Jang JSR (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23:665–685. https://doi.org/10.1109/21.256541

    Article  Google Scholar 

  31. 31.

    Franklin GF, Powell JD, Workman ML (1997) Digital control of dynamic systems. Addison-Wesley Longman, United States

  32. 32.

    Haznedar B, Kalinli A (2016) Detection of the relationship between thrombophilia disease with genetic disorders by adaptive neuro-fuzzy inference system (ANFIS). Sakarya Univ J Sci 20:13–21. https://doi.org/10.16984/saufenbilder.40786

  33. 33.

    Hímer Z, Kovács J, Benyó I, Kortela U (2004) “Neuro- fuzzy modelling and genetic algorithms optimization for flue gas oxygen control”, In 2nd IFAC Workshop on Advanced Fuzzy/Neural Control. University of Oulu. https://doi.org/10.1016/S1474-6670(17)30861-3

    Article  Google Scholar 

  34. 34.

    Jang JSR, Sun CT (1995) Neuro-Fuzzy modeling and control. Proc IEEE 83(3):378–406. https://doi.org/10.1109/5.364486

    Article  Google Scholar 

  35. 35.

    Haznedar B (2010) Determine the presence of genetic anomaly in male infertile patients by using artificial intelligence techniques. Thesis, Erciyes University, Kayseri, Turkey, M.S.c

    Google Scholar 

  36. 36.

    Haznedar B, Kalinli A (2018) Training ANFIS structure using simulated annealing algorithm for dynamic systems identification. NEUROCOMPUTING 302:66–74. https://doi.org/10.1016/j.neucom.2018.04.006

    Article  Google Scholar 

  37. 37.

    Haznedar B, Kalinli A (2016) Training ANFIS Using genetic algorithm for dynamic systems identification. Int J Intell Syst Appl Eng 4:44–47. https://doi.org/10.18201/ijisae.266053

    Article  Google Scholar 

  38. 38.

    Haznedar B, Arslan MT, Kalinli A (2018) Using adaptive neuro-fuzzy inference system for classification of microarray gene expression cancer profiles. Tamap J Eng 2018(29):1–13. https://doi.org/10.29371/2018.3.29

    Article  Google Scholar 

  39. 39.

    Dunn JC (2008) A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J Cybern 3:32–57. https://doi.org/10.1080/01969727308546046

    Article  Google Scholar 

  40. 40.

    Bezdek JC (1981) Pattern recognition with fuzzy objective function algorithms. Springer, US, New York. https://doi.org/10.1007/978-1-4757-0450-1

    Article  Google Scholar 

  41. 41.

    Park H, et al. (2005) “Comparison of recognition rates between BP and ANFIS with FCM clustering method on off-line PD diagnosis of defect models of traction motor stator coil,” In: Proceedings of 2005 International Symposium on Electrical Insulating Materials, (ISEIM 2005), pp. 849–852. https://doi.org/10.1109/ISEIM.2005.193512

  42. 42.

    Abdulshahed AM, Longstaff AP, Fletcher S, Myers A (2015) Thermal error modelling of machine tools based on ANFIS with fuzzy c-means clustering using a thermal imaging camera. Appl Math Model 39:1837–1852. https://doi.org/10.1016/j.apm.2014.10.016

    Article  Google Scholar 

  43. 43.

    Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Sci New Series 220:671–680. https://doi.org/10.1126/science.220.4598.671

    CAS  Article  Google Scholar 

  44. 44.

    Dowsland KA, Thompson JM (2012) Simulated Annealing. Handbook of Natural Computing. Springer, Berlin, pp 1623–1655

    Google Scholar 

  45. 45.

    Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21:1087–1092. https://doi.org/10.1063/1.1699114

    CAS  Article  Google Scholar 

  46. 46.

    Johnson DS, Aragon CR, McGeoch LA, Schevon C (1989) Optimization by simulated annealing: An experimental evaluation; Part I, Graph Partitioning. Oper Res 37:865–892. https://doi.org/10.1287/opre.37.6.865

    Article  Google Scholar 

  47. 47.

    Kalinli A (2012) Simulated annealing algorithm-based Elman network for dynamic system identification. Turk J Electr Eng Comput Sci 20:569–582. https://doi.org/10.3906/elk-1012-942

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Bulent Haznedar.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Haznedar, B., Arslan, M.T. & Kalinli, A. Optimizing ANFIS using simulated annealing algorithm for classification of microarray gene expression cancer data. Med Biol Eng Comput 59, 497–509 (2021). https://doi.org/10.1007/s11517-021-02331-z

Download citation


  • Fuzzy neural networks
  • Simulated annealing
  • Machine learning
  • Optimization
  • Gene expression