Effects of body postures on the shear modulus of thoracolumbar fascia: a shear wave elastography study


This study is aimed to use shear wave elastography (SWE) to study the relationship between shear modulus and different body postures of the thoracolumbar fascia (TLF) and acquire physiologically meaningful information from the stiffness-posture graph to better quantify passive flexion responses. Seven passive postures were defined to evaluate the shear modulus of right side TLF at the third and fourth lumbar vertebra levels (L3 and L4) in twenty healthy male subjects. The TLF stiffness was significantly different among different postures (p < 0.001), and the TLF stiffness at L3 was always less than that at L4 (p < 0.001). As the forward tilt increased from 0 to 60°, the TLF stiffness increased in sitting and standing postures by 54.01% and 192.84%. In the neutral postures, the TLF stiffness in standing and sitting postures was 66.98% and 165.48% higher than that in rest posture. The above results show that the elastic properties of TLF play an important role in maintaining body static posture and that the forward tilt and sitting postures are likely to induce low back pain (LBP). In conclusion, this study provides preliminary in vivo data for the relationship between body postures and TLF stiffness.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3



Thoracolumbar fascia


Shear wave elastography


Second lumbar vertebra level


Third lumbar vertebra level


Fourth lumbar vertebra level


Low back pain


Anterior superior iliac spines


Analysis of variance


Standard deviation


  1. 1.

    Arshad R, Zander T, Dreischarf M, Schmidt H (2016) Influence of lumbar spine rhythms and intra-abdominal pressure on spinal loads and trunk muscle forces during upper body inclination. Med Eng Phys 38(4):333–338. https://doi.org/10.1016/j.medengphy.2016.01.013

    Article  PubMed  Google Scholar 

  2. 2.

    Barker PJ, Briggs CA, Bogeski G (2004) Tensile transmission across the lumbar fasciae in unembalmed cadavers: effects of tension to various muscular attachments. Spine 29(2):129–138. https://doi.org/10.1097/01.BRS.0000107005.62513.32

    Article  PubMed  Google Scholar 

  3. 3.

    Barker PJ, Guggenheimer KT, Grkovic I, Briggs CA, Jones DC, Thomas CD, Hodges PW (2006) Effects of tensioning the lumbar fasciae on segmental stiffness during flexion and extension: young investigator award winner. Spine 31(4):397–405. https://doi.org/10.1097/01.brs.0000195869.18844.56

    Article  PubMed  Google Scholar 

  4. 4.

    Barker PJ, Hapuarachchi KS, Ross JA, Sambaiew E, Ranger TA, Briggs CA (2014) Anatomy and biomechanics of gluteus maximus and the thoracolumbar fascia at the sacroiliac joint. Clin Anat 27(2):234–240. https://doi.org/10.1002/ca.22233

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Bruno AG, Burkhart K, Allaire B, Anderson DE, Bouxsein ML (2017) Spinal loading patterns from biomechanical modeling explain the high incidence of vertebral fractures in the thoracolumbar region. J Bone Miner Res Off J Am Soc Bone Miner Res 32(6):1282–1290. https://doi.org/10.1002/jbmr.3113

    Article  Google Scholar 

  6. 6.

    Chen B, Zhao H, Liao L, Zhang Z, Liu C (2020) Reliability of shear-wave elastography in assessing thoracolumbar fascia elasticity in healthy male. Sci Rep 10(1):19952. https://doi.org/10.1038/s41598-020-77123-w

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Choi HW, Kim YE (2017) Effect of lumbar fasciae on the stability of the lower lumbar spine. Computer methods in biomechanics and biomedical engineering 20(13):1431–1437. https://doi.org/10.1080/10255842.2017.1370459

    Article  PubMed  Google Scholar 

  8. 8.

    Creze M, Nordez A, Soubeyrand M, Rocher L, Maître X, Bellin MF (2018) Shear wave sonoelastography of skeletal muscle: basic principles, biomechanical concepts, clinical applications, and future perspectives. Skelet Radiol 47(4):457–471. https://doi.org/10.1007/s00256-017-2843-y

    Article  Google Scholar 

  9. 9.

    Fan C, Fede C, Gaudreault N, Porzionato A, Macchi V, DE Caro R, Stecco C (2018) Anatomical and functional relationships between external abdominal oblique muscle and posterior layer of thoracolumbar fascia. Clin Anat 31(7):1092–1098. https://doi.org/10.1002/ca.23248

    Article  PubMed  Google Scholar 

  10. 10.

    Gatton ML, Pearcy MJ, Pettet GJ, Evans JH (2010) A three-dimensional mathematical model of the thoracolumbar fascia and an estimate of its biomechanical effect. J Biomech 43(14):2792–2797. https://doi.org/10.1016/j.jbiomech.2010.06.022

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Hajihosseinali M, Arjmand N, Shirazi-Adl A (2015) Effect of body weight on spinal loads in various activities: a personalized biomechanical modeling approach. J Biomech 48(2):276–282. https://doi.org/10.1016/j.jbiomech.2014.11.033

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Hestbaek L, Leboeuf-Yde C, Kyvik KO, Manniche C (2006) The course of low back pain from adolescence to adulthood: eight-year follow-up of 9600 twins. Spine 31(4):468–472. https://doi.org/10.1097/01.brs.0000199958.04073.d9

    Article  PubMed  Google Scholar 

  13. 13.

    Ignasiak D, Rüeger A, Sperr R, Ferguson SJ (2018) Thoracolumbar spine loading associated with kinematics of the young and the elderly during activities of daily living. J Biomech 70:175–184. https://doi.org/10.1016/j.jbiomech.2017.11.033

    Article  PubMed  Google Scholar 

  14. 14.

    Langevin HM, Fox JR, Koptiuch C, Badger GJ, Greenan-Naumann AC, Bouffard NA, Konofagou EE, Lee WN, Triano JJ, Henry SM (2011) Reduced thoracolumbar fascia shear strain in human chronic low back pain. BMC Musculoskelet Disord 12:203. https://doi.org/10.1186/1471-2474-12-203

    Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Maher C, Underwood M, Buchbinder R (2017) Non-specific low back pain. Lancet 389(10070):736–747. https://doi.org/10.1016/S0140-6736(16)30970-9

    Article  PubMed  Google Scholar 

  16. 16.

    Makhsous M, Lin F, Bankard J, Hendrix RW, Hepler M, Press J (2009) Biomechanical effects of sitting with adjustable ischial and lumbar support on occupational low back pain: evaluation of sitting load and back muscle activity. BMC Musculoskelet Disord 10:17. https://doi.org/10.1186/1471-2474-10-17

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Mense S (2019) Innervation of the thoracolumbar fascia. European journal of translational myology 29(3):8297. https://doi.org/10.4081/ejtm.2019.8297

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Moreau B, Vergari C, Gad H, Sandoz B, Skalli W, Laporte S (2016) Non-invasive assessment of human multifidus muscle stiffness using ultrasound shear wave elastography: a feasibility study. Proceedings of the institution of mechanical engineers. Part H, J Eng Med 230(8):809–814. https://doi.org/10.1177/0954411916656022

    Article  Google Scholar 

  19. 19.

    Park S, Hetzler T, Hammons D, Ward G (2018) Effects of biofeedback postural training on pre-existing low back pain in static-posture workers. J Back Musculoskelet Rehabil 31(5):849–857. https://doi.org/10.3233/BMR-171071

    Article  PubMed  Google Scholar 

  20. 20.

    Sbriccoli P, Solomonow M, Zhou BH, Baratta RV, Lu Y, Zhu MP, Burger EL (2004) Static load magnitude is a risk factor in the development of cumulative low back disorder. Muscle Nerve 29(2):300–308. https://doi.org/10.1002/mus.10531

    Article  PubMed  Google Scholar 

  21. 21.

    Shah Y, Arkesteijn M, Thomas D, Whyman J, Passfield L (2017) The acute effects of integrated myofascial techniques on lumbar paraspinal blood flow compared with kinesio-taping: a pilot study. J Bodyw Mov Ther 21(2):459–467. https://doi.org/10.1016/j.jbmt.2016.08.012

    Article  PubMed  Google Scholar 

  22. 22.

    Straker LM, Coleman J, Skoss R, Maslen BA, Burgess-Limerick R, Pollock CM (2008) A comparison of posture and muscle activity during tablet computer, desktop computer and paper use by young children. Ergonomics 51(4):540–555. https://doi.org/10.1080/00140130701711000

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Taguchi T, Hoheisel U, Mense S (2008) Dorsal horn neurons having input from low back structures in rats. Pain 138(1):119–129. https://doi.org/10.1016/j.pain.2007.11.015

    Article  PubMed  Google Scholar 

  24. 24.

    Vleeming A, Schuenke MD, Danneels L, Willard FH (2014) The functional coupling of the deep abdominal and paraspinal muscles: the effects of simulated paraspinal muscle contraction on force transfer to the middle and posterior layer of the thoracolumbar fascia. J Anat 225(4):447–462. https://doi.org/10.1111/joa.12227

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Willard FH, Vleeming A, Schuenke MD, Danneels L, Schleip R (2012) The thoracolumbar fascia: anatomy, function and clinical considerations. J Anat 221(6):507–536. https://doi.org/10.1111/j.1469-7580.2012.01511.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Wilke J, Schleip R, Klingler W, Stecco C (2017) The lumbodorsal fascia as a potential source of low back pain: a narrative review. Biomed Res Int 2017:5349620–5349626. https://doi.org/10.1155/2017/5349620

    Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Yahia LH, Pigeon P, DesRosiers EA (1993) Viscoelastic properties of the human lumbodorsal fascia. J Biomed Eng 15(5):425–429. https://doi.org/10.1016/0141-5425(93)90081-9

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Zemp R, Fliesser M, Wippert PM, Taylor WR, Lorenzetti S (2016) Occupational sitting behaviour and its relationship with back pain - a pilot study. Appl Ergon 56:84–91. https://doi.org/10.1016/j.apergo.2016.03.007

    Article  PubMed  Google Scholar 

  29. 29.

    Zhang ZJ, Ng G, Lee WC, Fu SN (2017) Increase in passive muscle tension of the quadriceps muscle heads in jumping athletes with patellar tendinopathy. Scand J Med Sci Sports 27(10):1099–1104. https://doi.org/10.1111/sms.12749

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Zhou J, Liu C, Zhang ZJ (2019) Non-uniform stiffness within gastrocnemius-Achilles tendon complex observed after static stretching. J Sports Sci Med 18(3):454–461

    PubMed  PubMed Central  Google Scholar 

  31. 31.

    Zhang J, Yu J, Liu C, Tang C, Zhang Z (2019) Modulation in elastic properties of upper trapezius with varying neck angle. App Bionics Biomech 2019:6048562–6048568. https://doi.org/10.1155/2019/6048562

    Article  Google Scholar 

Download references


The authors thank Prof. Chunlong Liu and Prof. Zhijie Zhang for technical support and review of this manuscript. SWE equipment for this article was provided by the Guangdong Province Traditional Chinese Medical Hospital. We are grateful to Ming Lin and Weixin Deng for medical screening of subjects and to the students of the Guangzhou University of Chinese Medicine for participated in the study as subject.


This study was supported by the “Elite Youth Education Program” of the Guangzhou University of Chinese Medicine (No. QNYC20170107).

Author information




Baizhen Chen: Conceptualization, methodology, investigation, validation, visualization, data curation, writing-original draft, and formal analysis

Chunlong Liu: Writing-review, supervision, and resources

Ming Lin: Investigation and project administration

Weixin Deng: Investigation and project administration

Zhijie Zhang: Writing-review, supervision, and resources

Corresponding author

Correspondence to Zhijie Zhang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, B., Liu, C., Lin, M. et al. Effects of body postures on the shear modulus of thoracolumbar fascia: a shear wave elastography study. Med Biol Eng Comput 59, 383–390 (2021). https://doi.org/10.1007/s11517-021-02320-2

Download citation


  • Thoracolumbar fascia
  • Shear modulus
  • Shear wave elastography
  • Passive stretch
  • Elastic properties