Skip to main content
Log in

Can we assess dynamic cerebral autoregulation in stroke patients with high rates of cardiac ectopicity?

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

It is unclear whether physiological recordings containing high numbers of ectopic heartbeats can be used to measure the cerebral autoregulation (CA) of blood flow. This study evaluated the utility of such data for assessing dynamic CA capacity. Physiological recordings of cerebral blood flow velocity, heart rate, end-tidal CO2 and beat-to-beat blood pressure from acute ischaemic stroke (AIS) patients (n = 46) containing ectopic heartbeats of varying number (0.2 to 25 occurrences per minute) were analysed. Dynamic CA was determined using the autoregulation index (ARI) and the normalised mean square error (NMSE) was used to evaluate the fitting of the step response between BP and CBFV to Tiecks’ model. We fitted linear mixed models on the CA variables incorporating ectopic burden, age, sex and hemisphere as predictor variables. Ectopic activity demonstrated an association with mean coherence (p = 0.006) but not with ARI (p = 0.162), impaired CA based on dichotomised ARI (p = 0.859) or NMSE (p = 0.671). Dynamic CA could be reliably assessed in AIS patients using physiological recordings with high rates of cardiac ectopic activity. This provides supportive data for future studies evaluating CA capability in AIS patients, with the potential to develop more individualised treatment strategies.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Chen J, Liu J, Xu W-H, Xu R, Hou B, Cui LY, Gao S (2014) Impaired dynamic cerebral autoregulation and cerebrovascular reactivity in middle cerebral artery stenosis. PLoS One 9:e88232. https://doi.org/10.1371/journal.pone.0088232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Xiong L, Tian G, Lin W, Wang W, Wang L, Leung T, Mok V, Liu J, Chen X, Wong KS (2017) Is dynamic cerebral autoregulation bilaterally impaired after unilateral acute ischemic stroke? J Stroke Cerebrovasc Dis 26:1081–1087. https://doi.org/10.1016/j.jstrokecerebrovasdis.2016.12.024

    Article  PubMed  Google Scholar 

  3. Castro P, Azevedo E, Serrador J, Rocha I, Sorond F (2017) Hemorrhagic transformation and cerebral edema in acute ischemic stroke: Link to cerebral autoregulation. J Neurol Sci 372:256–261. https://doi.org/10.1016/j.jns.2016.11.065

    Article  PubMed  Google Scholar 

  4. Agarwal SK, Heiss G, Rautaharju PM, Shahar E, Massing MW, Simpson RJ Jr (2010) Premature ventricular complexes and the risk of incident stroke: the Atherosclerosis Risk In Communities (ARIC) Study. Stroke 41:588–593. https://doi.org/10.1161/STROKEAHA.109.567800

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kallmünzer B, Breuer L, Kahl N, Bobinger T, Raaz-Schrauder D, Huttner HB, Schwab S, Köhrmann M (2012) Serious cardiac arrhythmias after stroke: incidence, time course, and predictors-a systematic, prospective analysis. Stroke 43:2892–2897. https://doi.org/10.1161/STROKEAHA.112.664318

    Article  PubMed  Google Scholar 

  6. Hagendorff A, Dettmers C, Block A, Pizzulli L, Omran H, Hartmann A, Manz M, Lüderitz B (1994) Reduction of cerebral blood flow with induced tachycardia in rats and in patients with coronary artery disease and premature ventricular contractions. Eur Heart J 15:1477–1481. https://doi.org/10.1093/oxfordjournals.eurheartj.a060417

    Article  CAS  PubMed  Google Scholar 

  7. Malkoff MD, Gomez CR, Myles G, Cruz-Flores S (1996) Cerebrovascular hemodynamic inefficiency of premature ventricular contractions. Angiology 47:51–56. https://doi.org/10.1177/000331979604700107

    Article  CAS  PubMed  Google Scholar 

  8. Eames PJ, Blake MJ, Dawson SL et al (2002) Dynamic cerebral autoregulation and beat to beat blood pressure control are impaired in acute ischaemic stroke. J Neurol Neurosurg Psychiatry 72:467–472

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Deegan BM, Sorond FA, Galica A, Lipsitz LA, O'Laighin G, Serrador JM (2011) Elderly women regulate brain blood flow better than men do. Stroke 42:1988–1993. https://doi.org/10.1161/STROKEAHA.110.605618

    Article  PubMed  Google Scholar 

  10. Ma H, Guo Z-N, Sun X, Liu J, Lv S, Zhao L, Guo W, Jin H, Yang Y (2017) Hematoma volume is a predictive factor of disturbed autoregulation after spontaneous intracerebral hemorrhage. J Neurol Sci 382:96–100. https://doi.org/10.1016/j.jns.2017.09.035

    Article  PubMed  Google Scholar 

  11. Reinhard M, Roth M, Müller T, Czosnyka M, Timmer J, Hetzel A (2003) Cerebral autoregulation in carotid artery occlusive disease assessed from spontaneous blood pressure fluctuations by the correlation coefficient index. Stroke 34:2138–2144. https://doi.org/10.1161/01.STR.0000087788.65566.AC

    Article  CAS  PubMed  Google Scholar 

  12. Panerai RB (2009) Transcranial Doppler for evaluation of cerebral autoregulation. Clin Auton Res 19:197–211. https://doi.org/10.1007/s10286-009-0011-8

    Article  PubMed  Google Scholar 

  13. Donnelly J, Budohoski KP, Smielewski P, Czosnyka M (2016) Regulation of the cerebral circulation: bedside assessment and clinical implications. Crit Care 20:129. https://doi.org/10.1186/s13054-016-1293-6

    Article  PubMed  PubMed Central  Google Scholar 

  14. Deegan BM, Serrador JM, Nakagawa K, Jones E, Sorond FA, Olaighin G (2011) The effect of blood pressure calibrations and transcranial Doppler signal loss on transfer function estimates of cerebral autoregulation. Med Eng Phys 33:553–562. https://doi.org/10.1016/j.medengphy.2010.12.007

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mahdi A, Rutter EM, Payne SJ (2017) Effects of non-physiological blood pressure artefacts on cerebral autoregulation. Med Eng Phys 47:218–221. https://doi.org/10.1016/j.medengphy.2017.06.007

    Article  PubMed  Google Scholar 

  16. Meel-van den Abeelen ASS, de Jong DLK, Lagro J, Panerai RB, Claassen JA (2016) How measurement artifacts affect cerebral autoregulation outcomes: a technical note on transfer function analysis. Med Eng Phys 38:490–497. https://doi.org/10.1016/j.medengphy.2016.02.001

    Article  PubMed  Google Scholar 

  17. Eames PJ, Potter JF, Panerai RB (2005) Assessment of cerebral autoregulation from ectopic heartbeats. Clin Sci 109:109–115. https://doi.org/10.1042/CS20050009

    Article  PubMed  Google Scholar 

  18. Panerai RB, Haunton VJ, Hanby MF et al (2016) Statistical criteria for estimation of the cerebral autoregulation index ( ARI ) at rest. Physiol Meas 37:1–17

    Article  Google Scholar 

  19. Patel N, Panerai RB, Haunton V, Katsogridakis E, Saeed NP, Salinet A, Brodie F, Syed N, D'Sa S, Robinson TG (2016) The Leicester cerebral haemodynamics database: normative values and the influence of age and sex. Physiol Meas 37:1485–1498. https://doi.org/10.1088/0967-3334/37/9/1485

    Article  PubMed  Google Scholar 

  20. Claassen JA, Meel-van den Abeelen AS, Simpson DM, Panerai RB (2016) Transfer function analysis of dynamic cerebral autoregulation: a white paper from the International Cerebral Autoregulation Research Network. J Cereb Blood Flow Metab 36:665–680. https://doi.org/10.1177/0271678X15626425

    Article  PubMed  PubMed Central  Google Scholar 

  21. Panerai RB, Haunton VJ, Minhas JS, Robinson TG (2018) Inter-subject analysis of transfer function coherence in studies of dynamic cerebral autoregulation. Physiol Meas 39. https://doi.org/10.1088/1361-6579/aaf160

    Article  CAS  Google Scholar 

  22. Tiecks FP, Lam AM, Aaslid R, Newell DW (1995) Comparison of static and dynamic cerebral autoregulation measurements. Stroke 26:1014–1019. https://doi.org/10.1161/01.STR.26.6.1014

    Article  CAS  Google Scholar 

  23. Caldas JR, Panerai RB, Haunton VJ, Almeida JP, Ferreira GS, Camara L, Nogueira RC, Bor-Seng-Shu E, Oliveira ML, Groehs RR, Ferreira-Santos L, Teixeira MJ, Galas FR, Robinson TG, Jatene FB, Hajjar LA (2017) Cerebral blood flow autoregulation in ischemic heart failure. Am J Phys Regul Integr Comp Phys 312:R108–R113. https://doi.org/10.1152/ajpregu.00361.2016

    Article  CAS  Google Scholar 

  24. Liu J, Simpson DM, Allen R (2005) High spontaneous fluctuation in arterial blood pressure improves the assessment of cerebral autoregulation. Physiol Meas 26:725–741. https://doi.org/10.1088/0967-3334/26/5/012

    Article  CAS  PubMed  Google Scholar 

  25. Hamner JW, Ishibashi K, Tan CO (2019) Revisiting human cerebral blood flow responses to augmented blood pressure oscillations. J Physiol 597:1553–1564. https://doi.org/10.1113/JP277321

    Article  CAS  PubMed  Google Scholar 

  26. Gommer ED, Shijaku E, Mess WH, Reulen JPHH (2010) Dynamic cerebral autoregulation: different signal processing methods without influence on results and reproducibility. Med Biol Eng Comput 48:1243–1250. https://doi.org/10.1007/s11517-010-0706-y

    Article  PubMed  PubMed Central  Google Scholar 

  27. Brodie FG, Atkins ER, Robinson TG, Panerai RB (2009) Reliability of dynamic cerebral autoregulation measurement using spontaneous fluctuations in blood pressure. Clin Sci 116:513–520. https://doi.org/10.1042/CS20080236

    Article  PubMed  Google Scholar 

  28. Coverdale NS, Gati JS, Opalevych O, Perrotta A, Shoemaker JK (2014) Cerebral blood flow velocity underestimates cerebral blood flow during modest hypercapnia and hypocapnia. J Appl Physiol 117:1090–1096. https://doi.org/10.1152/japplphysiol.00285.2014

    Article  PubMed  Google Scholar 

  29. Verbree J, Bronzwaer A-SGT, Ghariq E et al (2014) Assessment of middle cerebral artery diameter during hypocapnia and hypercapnia in humans using ultra-high-field MRI. J Appl Physiol 117:1084–1089. https://doi.org/10.1152/japplphysiol.00651.2014

    Article  PubMed  Google Scholar 

  30. Serrador JM, Picot PA, Rutt BK, Shoemaker JK, Bondar RL (2000) MRI measures of middle cerebral artery diameter in conscious humans during simulated orthostasis. Stroke 31:1672–1678

    Article  CAS  Google Scholar 

  31. White RP, Markus HS (1997) Impaired dynamic cerebral autoregulation in carotid artery stenosis. Stroke 28:1340–1344. https://doi.org/10.1161/01.STR.28.7.1340

    Article  CAS  PubMed  Google Scholar 

  32. Arnold AC, Haman K, Garland EM, Raj V, Dupont WD, Biaggioni I, Robertson D, Raj SR (2015) Cognitive dysfunction in postural tachycardia syndrome. Clin Sci 1:39–45. https://doi.org/10.1042/CS20140251

    Article  Google Scholar 

  33. de Azevedo DS, Salinet ASM, de Lima OM et al (2017) Cerebral hemodynamics in sepsis assessed by transcranial Doppler: a systematic review and meta-analysis. J Clin Monit Comput 31:1123–1132. https://doi.org/10.1007/s10877-016-9945-2

    Article  PubMed  Google Scholar 

  34. Bendat JS, Piersol AG (1986) Random data: analysis and measurement procedures: Fourth Edition, 2nd edn. Wiley, New York

    Google Scholar 

  35. Panerai RB (2014) Nonstationarity of dynamic cerebral autoregulation. Med Eng Phys 36:576–584. https://doi.org/10.1016/j.medengphy.2013.09.004

    Article  PubMed  Google Scholar 

  36. Aaslid R, Lindegaard KF, Sorteberg W, Nornes H (1989) Cerebral autoregulation dynamics in humans. Stroke 20:45–52. https://doi.org/10.1161/01.STR.20.1.45

    Article  CAS  Google Scholar 

  37. Czosnyka M, Smielewski P, Kirkpatrick P, Menon DK, Pickard JD (1996) Monitoring of cerebral autoregulation in head-injured patients. Stroke 27:1829–1834. https://doi.org/10.1161/01.STR.27.10.1829

    Article  CAS  PubMed  Google Scholar 

  38. Schiatti L, Nollo G, Rossato G, Faes L (2015) Extended Granger causality: a new tool to identify the structure of physiological networks. Physiol Meas 36:827–843. https://doi.org/10.1088/0967-3334/36/4/827

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

TGR is a National Institute for Health Research Senior Investigator.

Funding

This study was supported by UK Engineering and Physical Sciences Research Council (grant No. EP/K041207/1).

Author information

Authors and Affiliations

Authors

Contributions

Study design: O.LL, V.H., T.G.R., R.B.P. Patient recruitment, data collection and data preparation: O.LL, A.S.M.S., M.Y.L, N.P.S., F.B. Data analysis: OLL, M.N. Interpretation of data: O.LL, V.H., M.N., T.G.R., R.B.P. Drafted manuscript: O.LL, V.H., M.N., T.G.R., R.B.P. Edited and revised manuscript: O.LL, V.H., M.N., T.G.R., R.B.P. Approved final version of manuscript: O.LL, V.H., M.N., T.G.R., R.B.P.

Corresponding author

Correspondence to Ronney B. Panerai.

Ethics declarations

All participants had provided informed consent in compliance with local ethics committee approvals

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Llwyd, O., Haunton, V., Salinet, A.S. et al. Can we assess dynamic cerebral autoregulation in stroke patients with high rates of cardiac ectopicity?. Med Biol Eng Comput 57, 2731–2739 (2019). https://doi.org/10.1007/s11517-019-02064-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-019-02064-0

Keywords

Navigation