Skip to main content

Effects of the arterial radius and the center-line velocity on the conductivity and electrical impedance of pulsatile flow in the human common carotid artery


In order to investigate the contribution of arterial radius and center-line velocity to the blood conductivity and electrical impedance of pulsatile flow in the human common carotid artery, we proposed three simplified mathematical models to describe the relationship between the center-line velocity, the arterial radius, and the blood conductivity. By comparing the fitting results with those obtained from our previously proposed elastic-tube hemodynamic model, we found that the change in center-line velocity had more notable effect on the blood conductivity than the change in arterial radius. Moreover, the change in arterial radius contributed much more to the electrical impedance than the change in blood conductivity induced by the center-line velocity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Manbachi A, Hoi Y, Wasserman BA, Lakatta EG, Steinman DA (2011) On the shape of the common carotid artery, with implications for blood velocity profiles. Physiol Meas 32(12):1885–1897

    PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Yacoub M, Elguindy A, Afifi A, Yacoub L, Wright G (2014) Taking cardiac surgery to the people. J Cardiovasc Transl Res 7(9):797–802

    PubMed  Article  Google Scholar 

  3. 3.

    Apfel H (1990) Electrical impedance of the carotid artery in response to various types of stress. In: Biofluid Mechanics Blood Flow in Large Vessels. Springer-Verlag, Berlin Heidelberg, pp 193–200

    Google Scholar 

  4. 4.

    Tomsin K, Mesens T, Molenberghs G, Gyselaers W (2011) Diurnal and position-induced variability of impedance cardiography measurements in healthy subjects. Clin Physiol Funct Imaging 31(2):145–150

    PubMed  Google Scholar 

  5. 5.

    Bernstein DP, Henry IC, Banet MJ, Dittrich T (2012) Stroke volume obtained by electrical interrogation of the brachial artery: transbrachial electrical bioimpedance velocimetry. Physiol Meas 33(4):629–649

    PubMed  Article  Google Scholar 

  6. 6.

    Ebrahim M, Hegde S, Printz B, Abcede M, Proudfoot JA, Davis C (2016) Evaluation of impedance cardiography for measurement of stroke volume in congenital heart disease. Pediatr Cardiol 37(8):1–5

    Article  Google Scholar 

  7. 7.

    Gaw RL, Cornish BH, Thomas BJ (2007) Comparison of a theoretical impedance model with experimental measurements of pulsatile blood flow. Proceedings 13th International Conference on Electrical Bio-impedance and the 8th Conference on Electrical Impedance Tomography ICEBI 2007(17): 32–35

  8. 8.

    Gaw RL, Cornish BH, Thomas BJ (2008) The electrical impedance of pulsatile blood flowing through rigid tubes: a theoretical investigation. IEEE Trans Biomed Eng 55(2):721–727

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Kubicek WG, Karnegis JN, Patterson RP, Witsoe DA, Mattson RH (1966) Development and evaluation of an impedance cardiac output system. Aerosp Med 37(12):1208–1212

    CAS  PubMed  Google Scholar 

  10. 10.

    Peura RA, Penney BC, Arcuri J, Jr AF, Wheeler HB (1978) Influence of erythrocyte velocity on impedance plethysmographic measurements. Med Biol Eng Comput 16(2):147–154

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Raaijmakers E, Marcus JT, Goovaerts HG, De Vries PMJM, Faes TJC, Heethaar RM (1996) The influence of pulsatile flow on blood resistivity in impedance cardiograp. 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1957–1958

  12. 12.

    Sakamoto K, Kanai H (1995) Electrical characteristics of flowing blood. IEEE Trans Biomed Eng BME-26(12):686–695

    Article  Google Scholar 

  13. 13.

    Shankar TMR, Webster JG, Shao SY (1985) The contribution of vessel volume change and blood resistivity change to the electrical impedance pulse. IEEE Trans Biomed Eng 32(3):192–198

    Article  Google Scholar 

  14. 14.

    Kosicki J, Chen LH, Hobbie R, Patterson R, Ackerman E (1986) Contributions to the impedance cardiogram waveform. Ann Biomed Eng 14(1):67–80

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Visser KR (1989) Electric properties of flowing blood and impedance cardiography. Ann Biomed Eng 17(5):463–473

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Visser KR, Lamberts R, Zijlstra WG (1990) Investigation of the origin of the impedance cardiogram by means of exchange transfusion with stroma free haemoglobin solution in the dog. Cardiovasc Res 24(1):24–32

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Visser KR (1992) Electric conductivity of stationary and flowing human blood at low frequencies. Med Biol Eng Comput 30(6):636–640

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Wtorek J, Poliński A (2005) The contribution of blood-flow-induced conductivity changes to measured impedance. IEEE Trans Biomed Eng 52(1):41–49

    PubMed  Article  Google Scholar 

  19. 19.

    Fujii M, Nakajima K, Sakamoto K, Kanai H (1999) Orientation and deformation of erythrocytes in flowing blood. Ann N Y Acad Sci 873(1):245–261

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Hoetink AE, Faes TJC, Visser KR, Heethaar RM (2004) On the flow dependency of the electrical conductivity of blood. IEEE Trans Biomed Eng 51(7):1251–1261

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Shen H, Zhu Y, Qin KR (2016) A theoretical computerized study for the electrical conductivity of arterial pulsatile blood flow by an elastic tube model. Med Eng Phys 38(12):1439–1448

    PubMed  Article  Google Scholar 

  22. 22.

    Liu ZR, Xu G, Chen Y, Teng ZZ, Qin KR (2003) An analysis model of pulsatile blood flow in arteries. Appl Math Mech 24(2):230–240

    Article  Google Scholar 

  23. 23.

    Warriner R, Johnston K, Cobbold R (2008) A viscoelastic model of arterial wall motion in pulsatile flow: implications for Doppler ultrasound clutter assessment. Physiol Meas 29(2):157–179

    PubMed  Article  Google Scholar 

  24. 24.

    Riahi DN (2017) On low frequency oscillatory elastic arterial blood flow with stenosis. Int J Appl Comput Math 3(1):1–16

    Google Scholar 

  25. 25.

    Ling SC, Atabek HB (1972) A nonlinear analysis of pulsatile flow in arteries. J Fluid Mech 55(3):493–511

    Article  Google Scholar 

  26. 26.

    Fricke H (1924) A mathematical treatment of the electric conductivity and capacity of disperse systems I. The electric conductivity of a suspension of homogeneous spheroids. Phys Rev 24(5):575–587

    CAS  Article  Google Scholar 

  27. 27.

    Sugawara M, Niki K, Furuhata H, Ohnishi S, Suzuki S (2000) Relationship between the pressure and diameter of the carotid artery in humans. Heart Vessels 15(1):49–51

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Heffernan KS, Jae SY, Wilund KR, Woods JA, Fernhall B (2008) Racial differences in central blood pressure and vascular function in young men. Ajp Heart Circ Physiol 295(6):2380–2387

    Article  CAS  Google Scholar 

  29. 29.

    Flaud P, Bensalahk A (1970) Indirect instantaneous velocity profiles and wall shear rate measurements in arteries: a centre-line velocity method applied to non- newtonian fluids. Comput Simul Biomed III:191–199

    Google Scholar 

  30. 30.

    Dutta A, Wang DM, Tarbell JM (1992) Numerical analysis of flow in an elastic artery model. J Biomech Eng 114(1):26–33

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Butcher JC (2008) Numerical methods for ordinary differential equations. John Wiley & Sons, New York

    Book  Google Scholar 

  32. 32.

    Nelder JA, Mead R (1965) A simplex method for function minimization. Commput J 7(4):308–313

    Article  Google Scholar 

  33. 33.

    Lagarias JC, Reeds JA, Wright MH, Wright PE (1998) Convergence properties of the nelder--mead simplex method in low dimensions. Siam journal on optimization a publication of the Society for Industrial. Appl Math 9(1):112–147

    Google Scholar 

Download references


This work was, in part, supported by the National Natural Science Foundation of China (Grant No. 31370948), Liaoning Province Natural Science Fund (Grant No. 20170540052), and Liaoning Province Science Fund for Research and Development Program (Grant Nos. 2017225078, 2017225079).

Author information



Corresponding authors

Correspondence to Yu Wang or Kai-Rong Qin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shen, H., Li, S., Wang, Y. et al. Effects of the arterial radius and the center-line velocity on the conductivity and electrical impedance of pulsatile flow in the human common carotid artery. Med Biol Eng Comput 57, 441–451 (2019).

Download citation


  • Electrical impedance
  • Blood conductivity
  • Pulsatile blood flow
  • Simplified mathematical model
  • Arterial radius
  • Centre-line velocity
  • Human common carotid artery