Skip to main content

Advertisement

Log in

A unified procedure for detecting, quantifying, and validating electrocardiogram T-wave alternans

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The precision of T-wave alternans (TWA) quantification depends certainly upon the way we choose to align T-waves and to get feedbacks from the electrocardiogram (ECG) quality. Quantifying the ECG TWA based on assigning automatically the required number of T-waves along with applying a proper T-wave alignment approach is the purpose of this paper. The structure of the proposed method mainly consists of seven sections: preprocessing, ECG events detection–delineation, alignment of cycles, T-wave template extraction, T-wave delineation, T-wave left- and right-lobes synchronization, and T-wave alternans quantification–detection by getting feedback from ECG quality value. The proposed method is examined in two ways. First, some artificially generated ECGs with predefined TWA patterns and qualities are analyzed in order to regulate the parameters of the method to achieve the maximum performance. Finally, the method is applied to PhysioNet/Computing in Cardiology Challenge 2008 database. In this stage, the achieved accuracy is about 91.0 %, which shows marginal improvement in the area of TWA quantification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

Y[n]:

Random walks process

q :

Tail probability

α :

Severity level of the noise

x[n]:

Signal

\( \widehat{x}[n] \) :

Template waveform

T ll :

T-wave left lobe

a ll :

Left-lobe correction value

T rl :

T-wave right lobe

a rl :

Right-lobe correction value

P :

Head probability

S :

Step value

R(n):

Normally distributed pseudorandom number

\( \widetilde{x}[n] \) :

Residual signal of x and \( \widehat{x} \)

Ρ :

Fitness score

T templl :

T-wave left-lobe template

w ll :

Left-lobe weight function

T temprl :

T-wave right-lobe template

w rl :

Right-lobe weight function

TWA:

T-wave alternans

RW:

Random walks

GSF:

Gaussian smoothing filtering

ECG:

Electrocardiogram

ASF:

Adaptive smoothing filtering

MHOM:

Multiple higher-order momentum

References

  1. Berman K, Paul J (2005) Algorithms: sequential, parallel, and distributed. Ch 24. Probabilistic and Randomized Algorithms

  2. Bortolan G, Christov I (2012) T-wave alternans detection by a combined method of principal component analysis and T-wave amplitude. Physiol Meas 33:333–343

    Article  PubMed  CAS  Google Scholar 

  3. Bortolan G, Christov II, Engineering B, Academy B (2008) Principal component analysis for detection and assessment of T-Wave alternans signal preprocessing. Comput Cardiol 35:521–524

    Google Scholar 

  4. Burattini L, Burattini R (2008) Heart-rate adaptive match filter based procedure to detect and quantify T-wave alternans. Comput Cardiol 73:513–516

    Google Scholar 

  5. Burattini L, Bini S, Burattini R (2011) Automatic microvolt T-wave alternans identification in relation to ECG interferences surviving preprocessing. Med Eng Phys 33:17–30

    Article  PubMed  Google Scholar 

  6. Cherkassky V, Kilts S (2001) Myopotential denoising of ECG signals using wavelet thresholding methods. Neural netw official J Int Neural Netw Soc 14:1129–1137

    Article  CAS  Google Scholar 

  7. Chinchkhede K, YADAV G (2011) On the implementation of FIR filter with various windows for enhancement of ECG signal. Int J Eng Sci Technol 3:2031–2040

    Google Scholar 

  8. Clifford G, Nemati S, Sameni R (2008) An Artificial multi-channel model for generating abnormal electrocardiographic rhythms. Comput cardiol 35:773–776

    PubMed  Google Scholar 

  9. Erçelebi E (2004) Electrocardiogram signals de-noising using lifting-based discrete wavelet transform. Comput Biol Med 34:479–493

    Article  PubMed  Google Scholar 

  10. Ghaffari A, Homaeinezhad MR, Akraminia M, Atarod M, Daevaeiha M (2009) A robust wavelet-based multi-lead Electrocardiogram delineation algorithm. Med Eng Phys 31:1219–1227

    Article  PubMed  CAS  Google Scholar 

  11. Ghaffari A, Homaeinezhad MR, Ahmadi Y (2010) An open-source applied simulation framework for performance evaluation of QRS complex detectors. Simul Model Pract Theory 18:860–880

    Article  Google Scholar 

  12. Ghaffari A, Homaeinezhad MR, Khazraee M, Daevaeiha MM (2010) Segmentation of Holter ECG waves via analysis of a discrete wavelet-derived multiple skewness-kurtosis based metric. Ann Biomed Eng 38:1497–1510

    Article  PubMed  CAS  Google Scholar 

  13. Ghaffari A, Homaeinezhad MR, Daevaeiha MM (2011) High resolution ambulatory Holter ECG events detection-delineation via modified multi-lead wavelet-based features analysis: detection and quantification of heart rate turbulence. Expert Syst Appl 38:5299–5310

    Article  Google Scholar 

  14. Ghoraani B, Krishnan S, Selvaraj RJ, Chauhan VS (2011) T wave alternans evaluation using adaptive time-frequency signal analysis and non-negative matrix factorization. Med Eng Phys 33:700–711

    Article  PubMed  Google Scholar 

  15. Gold MR et al (2000) A comparison of T-wave alternans, signal averaged electrocardiography and programmed ventricular stimulation for arrhythmia risk stratification. J Am Coll Cardiol 36:2247–2253

    Article  PubMed  CAS  Google Scholar 

  16. Goldberger AL et al (2000) PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101:e215–e220

    Article  PubMed  CAS  Google Scholar 

  17. Homaeinezhad MR, Sabetian P, Feizollahi A, Ghaffari A, Rahmani R (2012) Parametric modelling of cardiac system multiple measurement signals: an open-source computer framework for performance evaluation of ECG, PCG and ABP event detectors. J Med Eng Technol 36:117–134

    Article  PubMed  CAS  Google Scholar 

  18. Homaeinezhad MR, Sabzevari SAH, Ghaffari A, Daevaeiha M (2012) High-accuracy characterization of ambulatory Holter electrocardiogram events: a comparative study between Walsh-Hadamard transform, first-derivative-based and intelligent techniques. Int J Syst Biol Biomed Technol 1:40–71

    Google Scholar 

  19. Ikeda T, Saito H, Tanno K (2002) T-wave alternans as a predictor for sudden cardiac death after myocardial infarction. Am J Cardiol 89:79–82

    Article  PubMed  Google Scholar 

  20. Ikeda T et al (2006) Predictive value of microvolt T-wave alternans for sudden cardiac death in patients with preserved cardiac function after acute myocardial infarction: results of a collaborative cohort study. J Am Coll Cardiol 48:2268–2274

    Article  PubMed  Google Scholar 

  21. Jager F et al (2003) Long-term ST database: a reference for the development and evaluation of automated ischaemia detectors and for the study of the dynamics of myocardial ischaemia. Med Biol Eng Comput 41:172–182

    Article  PubMed  CAS  Google Scholar 

  22. Janusek D, Pawlowski Z, Maniewski R (2007) Evaluation of the T-wave alternans detection methods: a simulation study. Anatol J Cardiol 7:116–119

    Google Scholar 

  23. Khaustov A, Nemati S, Clifford G (2008) An open-source standard T-Wave alternans detector for benchmarking. Comput Cardiol 35:509–512

    Google Scholar 

  24. Klingenheben T, Zabel M, D’Agostino R (2000) Predictive value of T-wave alternans for arrhythmic events in patients with congestive heart failure. The Lancet 356:651–652

    Article  CAS  Google Scholar 

  25. Li T, Sattar TP, Sun S (2012) Deterministic resampling: unbiased sampling to avoid sample impoverishment in particle filters. Signal Proces 92:1637–1645

    Article  Google Scholar 

  26. Mainardi L, Sassi R (2011) Analysis of T-wave alternans using the dominant T-wave paradigm. J Electrocardiol 44:119–125

    Article  PubMed  Google Scholar 

  27. Mainardi L, Bertinelli M, Sassi R (2008) Analysis of T-wave alternans using the Ramanujan transform. Comput Cardiol 35:605–608

    Google Scholar 

  28. Mapping P, Method P, Alternans T (2011) Poincare mapping: a potential method for detection of t-wave alternans. Procedia Environ Sci 8:575–581

    Article  Google Scholar 

  29. Martínez J, Olmos S (2005) Methodological principles of T wave alternans analysis: a unified framework. IEEE Trans Biomed Eng 52:599–613

    Article  PubMed  Google Scholar 

  30. Martínez J, Olmos S (2006) Characterization of repolarization alternans during ischemia: time-course and spatial analysis. IEEE Trans Biomed Eng 53:701–711

    Article  PubMed  Google Scholar 

  31. McBride J, Sullivan A, Xia H, Petrie A, Zhao X (2011) Reconstruction of physiological signals using iterative retraining and accumulated averaging of neural network models. Physiol Meas 32:661–675

    Article  PubMed  Google Scholar 

  32. Monasterio V, Mart JP (2008) Multilead T-Wave Alternans quantification based on spatial filtering and the Laplacian likelihood ratio method. Comput Cardiol 35:601–604

    Google Scholar 

  33. Moody G (2008) The PhysioNet/computers in cardiology challenge 2008: T-Wave alternans. Comput Cardiol 35:505–508

    Google Scholar 

  34. Moody GB (2010) The PhysioNet/computing in cardiology challenge 2010: mind the gap. Comput Cardiol 37:305–309

    Google Scholar 

  35. Naseri H, Homaeinezhad MR (2012) Detection and boundary identification of phonocardiogram sounds using an expert frequency-energy based metric. Ann Biomed Eng 41:279–292. doi:10.1007/s10439-012-0645-x

    Article  PubMed  Google Scholar 

  36. Naseri H, Homaeinezhad M (2013) r. Electrocardiogram signal quality assessment using artificially reconstructed target lead, Computer Methods in Biomechanics and Biomedical Engineering Manuscript Sent for Review

    Google Scholar 

  37. Nearing BD, Verrier RL (2002) Modified moving average analysis of T-wave alternans to predict ventricular fibrillation with high accuracy Modified moving average analysis of T-wave alternans to predict ventricular fibrillation with high accuracy. J Appl Physiol 92:541–549

    PubMed  Google Scholar 

  38. Nijm GM, Swiryn S, Larson AC, Sahakian AV (2008) Estimation of T-wave alternans from multi-lead ECG signals using a modified moving average method. Comput Cardiol 35:517–520

    Google Scholar 

  39. Patel RK et al (2011) Microvolt T-wave alternans in end-stage renal disease patients–associations with uremic cardiomyopathy. Clin J Am Soc Nephrol CJASN 6:519–527

    Article  Google Scholar 

  40. Poornachandra S (2008) Wavelet-based denoising using subband dependent threshold for ECG signals. Digital Signal Process 18:49–55

    Article  Google Scholar 

  41. Poornachandra S, Kumaravel N (2005) Hyper-trim shrinkage for denoising of ECG signal. Digital Signal Process 15:317–327

    Article  Google Scholar 

  42. Press E, Christov I, Bortolan G, Simova I, Katova T (2012) T wave and QRS complex alternans during stress ECG testing according to the presence or absence of diabetes mellitus. J Endocrinol Metab 2:32–38

    Google Scholar 

  43. Rojo-alvarez JL, Rey U, Carlos J, Hernandez UM (2008) Detection and estimation of T wave alternans with matched filter and nonparametric bootstrap test. Comput Cardiol 35:617–620

    Google Scholar 

  44. Sharma LN, Dandapat S, Mahanta A (2010) ECG signal denoising using higher order statistics in Wavelet subbands. Biomed Signal Process Control 5:214–222

    Article  Google Scholar 

  45. Shen TW, Tsao YT (2008) An improved spectral method of detecting and quantifying T-Wave alternans for SCD risk evaluation method (SM). Comput Cardiol 35:609–612

    Google Scholar 

  46. Singh BN, Tiwari AK (2006) Optimal selection of wavelet basis function applied to ECG signal denoising. Digital Signal Process 16:275–287

    Article  Google Scholar 

  47. Technology M, Ruta J (2001) Usefulness of the Poincaré maps in detection of T-wave alternans in precordial leads of standard ECG–a comparison with the spectral method. Diagn Medical Technol 7:471–476

    Google Scholar 

  48. Väänänen H (2008) Nonlinear detection of T-Wave alternans. Comput Cardiol 35:769–772

    Google Scholar 

  49. Verrier RL et al (2011) Microvolt T-wave alternans physiological basis, methods of measurement, and clinical utility–consensus guideline by International Society for Holter and noninvasive electrocardiology. J Am Coll Cardiol 58:1309–1324

    Article  PubMed  Google Scholar 

  50. Wu Y, Rangayyan RM, Zhou Y, Ng S-C (2009) Filtering electrocardiographic signals using an unbiased and normalized adaptive noise reduction system. Med Eng Phys 31:17–26

    Article  PubMed  CAS  Google Scholar 

  51. Xia H, Garcia GA, Bains J, Wortham DC, Zhao X (2012) Matrix of regularity for improving the quality of ECGs. Physiol measure 33:1535–1548

    Article  Google Scholar 

  52. Yan J, Lu Y, Liu J, Wu X, Xu Y (2010) Self-adaptive model-based ECG denoising using features extracted by mean shift algorithm. Biomed Signal Process Control 5:103–113

    Article  Google Scholar 

  53. Zheng D et al (2008) T-wave alternans: a comparison of different measurement techniques. Comput Cardiol 35:597–600

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Naseri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naseri, H., Pourkhajeh, H. & Homaeinezhad, M.R. A unified procedure for detecting, quantifying, and validating electrocardiogram T-wave alternans. Med Biol Eng Comput 51, 1031–1042 (2013). https://doi.org/10.1007/s11517-013-1084-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-013-1084-z

Keywords

Navigation