Skip to main content

Advertisement

Log in

The remodeling of alveolar bone supporting the mandibular first molar with different levels of periodontal attachment

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The objective of this study was to investigate alveolar bone remodeling of the mandibular first molar with differing levels of periodontal attachment under mastication loading. Three-dimensional finite element models of the mandibular first molar with differing levels of periodontal attachment were established. The stress distributions and bone density changes were analyzed under mastication loading to simulate the remodeling process of mandibular bone based on the theory of strain energy density. The results showed that the alveolar buccal, lingual ridges and root apex areas experienced higher stresses. The stresses and densities of the alveolar bone increased proportionally to increased mastication loading. Decrease in alveolar bone density under extreme loading indicated bone resorption. The remodeling rate was continual with gradual loading. Periodontal ligament support marginally decreased with an increased remodeling rate under extreme loading. Changes in alveolar bone density can reflect the remodeling process of periodontal tissue under mastication loading. The relationship between the change in density and mastication loading during remodeling can provide useful indicators into clinical treatment and diagnosis of the periodontal disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alkan A, Keskiner I, Arici S, Sato S (2006) The effect of periodontitis on biting abilities. J Periodontol 77(8):1442–1445

    Article  PubMed  Google Scholar 

  2. Alkan A, Keskiner I, Arici S, Sato S (2006) The effect of periodontal surgery on bite force, occlusal contact area and bite pressure. J Am Dent Assoc 137(7):978–983

    PubMed  Google Scholar 

  3. Beaupre GS, Orr TE, Carter DR (1990) An approach for time-dependent bone modeling and remodeling-application: a preliminary remodeling simulation. J Orthop Res 8:662–670

    Article  PubMed  CAS  Google Scholar 

  4. Boccaccio A, Prendergast PJ, Pappalettere C, Kelly DJ (2008) Tissue differentiation and bone regeneration in an osteotomized mandible: a computational analysis of the latency period. Med Biol Eng Comput 46(3):283–298

    Article  PubMed  CAS  Google Scholar 

  5. Boccaccio A, Kelly DJ, Pappalettere C (2012) A model of tissue differentiation and bone remodelling in fractured vertebrae treated with minimally invasive percutaneous fixation. Med Biol Eng Comput 50:947–959

    Article  PubMed  CAS  Google Scholar 

  6. Bourauel C, Vollmer D, Jäger A (2000) Application of bone remodeling theories in the simulation of orthodontic tooth movements. J Orofac Orthop 61(4):266–279

    Article  PubMed  CAS  Google Scholar 

  7. Carter DR, Hayes WC (1977) The compressive behaviour of bone as a two-phase porous structure. J Bone Joint Surg Br 59:954–962

    CAS  Google Scholar 

  8. Cattaneo PM, Dalstra M, Melsen B (2005) The finite element method: a tool to study orthodontic tooth movement. J Dent Res 84(5):428–433

    Article  PubMed  CAS  Google Scholar 

  9. Chou HY, Jagodnik JJ, Müftü S (2008) Predictions of bone remodeling around dental implant systems. J Biomech 41:1365–1373

    Article  PubMed  Google Scholar 

  10. Field Clarice, Li Qing, Li Wei, Swain M (2008) Influence of tooth removal on mandibular bone response to mastication. Arch Oral Biol 53(12):1129–1137

    Article  PubMed  Google Scholar 

  11. Clarice F, Li Qing, Li Wei, Thompson M, Swain M (2010) Prediction of mandibular bone remodelling induced by fixed partial dentures. J Biomech 43(9):1771–1779

    Article  Google Scholar 

  12. Daniel L, Qing L, Wei L, Swain M (2009) Dental inplant induced bone remodeling and associated algorithms. J Mech Behav Biomed Mater 2(5):410–432

    Article  Google Scholar 

  13. Daniel L, Qing L, Wei L, Duckmanton N, Swain M (2010) Mandibular bone remodeling induced by dental implant. J Biomech 43(2):287–293

    Article  Google Scholar 

  14. Davies SJ, Gray RJ, Linden GJ, James JA (2001) Occlusal considerations inperiodontics. Br Dent J 191(11):597–604

    PubMed  CAS  Google Scholar 

  15. Wagnac E, Arnoux P-J, Garo A, Aubin C-E (2012) Finite element analysis of the influence of loading rate on a model of the full lumbar spine under dynamic loading conditions. Med Biol Eng Comput 50:903–915

    Article  PubMed  Google Scholar 

  16. Foz AM, Artese HP, Horliana AC, Pannuti CM, Romito GA (2012) Occlusal adjustment associated with periodontaltherapy—a systematic review. J Dent 40(12):1025–1035

    Article  PubMed  Google Scholar 

  17. Frost HM (1987) The mechanostat: a proposed pathogenic mechanism of osteoporoses and the bone mass effects of mechanical and nonmechanical agents. Bone Miner 2:73–85

    PubMed  CAS  Google Scholar 

  18. Geramy A, Adibrad M, Sahabi M (2010) The effects of splinting periodontally compromised removable partial denture abutments on bone stresses: a three-dimensional finite element study. J Dent Sci 5(1):1–7

    Article  Google Scholar 

  19. Geris L, Vandamme K, Naert I, Vander Sloten J, Duyck J, Van Oosterwyck H (2009) Numerical simulation of bone regeneration in a bone chambe. J Dent Res 88(2):158–163

    Article  PubMed  CAS  Google Scholar 

  20. Hayasaki H, Okamoto A, Iwase Y, Yamasaki Y, Nakata M (2004) Occlusal contact area of mandibular teeth during lateral excursion. Int J Prosthodont 17(1):72–76

    PubMed  Google Scholar 

  21. Helgason B, Perilli E, Schileo E, Taddei F, Brynjólfsson S, Viceconti M (2008) Mathematical relationships between bone density and mechanical properties: a literature review. Clin Biomech 23(2):135–146

    Article  Google Scholar 

  22. Holmes DC, Diaz-Arnold AM, Leary JM (1996) Influence of post dimension on stress distribution in dentin. J Prosthet Dent 75(2):140–147

    Article  PubMed  CAS  Google Scholar 

  23. Holmes DC, Loftus JT (1997) Influence of bone quality on stress distribution for endosseous implants. J Oral Implantol 23(3):104–111

    PubMed  CAS  Google Scholar 

  24. Huang H-M, Yeh C-Y, Lee S-Y, Wang MS, Pan LC, Chen CC (2001) Factors influencing the dynamic behaviour of human teeth. Med Biol Eng Comput 39(4):176–181

    Article  PubMed  CAS  Google Scholar 

  25. Kleinfelder JW, Ludwigt K (2002) Maximal bite force in patients with reduced periodontal tissue support with and without splinting. J Periodontol 73(10):1184–1187

    Article  PubMed  Google Scholar 

  26. Li J, Li H, Shi L, Fok AS, Ucer C, Devlin H, Horner K, Silikas N (2007) A mathematical model for simulating the bone remodeling process under mechanical stimulus. Dent Mater 23(9):1073–1078

    Article  PubMed  Google Scholar 

  27. Lian Z, Guan H, Ivanovski S, Loo YC, Johnson NW, Zhang H (2010) Effect of bone to implant contact percentage on bone remodelling surrounding a dental implant. Int J Oral Maxillofac Surg 39(7):690–698

    Article  PubMed  CAS  Google Scholar 

  28. Lin CL, Chang YH, Chang WJ, Cheng MH (2006) Evaluation of a reinforced slot design for CEREC system to restore extensively compromised premolars. J Dent Res 34(3):221–229

    Article  CAS  Google Scholar 

  29. Lin CL, Lin YH, Chang SH (2010) Multi-factorial analysis of variable influencing the bone loss of an implant placed in the maxilla: prediction using FEA and SED bone remodeling algorithm. J Biomech 43(4):644–651

    Article  PubMed  Google Scholar 

  30. Lin D, Li Qi, Li W (2007) Evaluation of dental implant induced bone remodeling by using a 2D finite element model. In: Proceedings of 5th Australasian congress on applied mechanics, Brisbane, Australia

  31. Lundgren D, Laurell L (1986) Occlusal force pattern during chewing and biting in dentitions restored with fixed bridges of cross-arch extension, 2. Unilateral posterior 2-unit cantilevers. J Oral Rehabil 13(2):191–203

    Article  PubMed  CAS  Google Scholar 

  32. Maruyama T, Nakamura Y, Hayashi T, Kato K (2006) Computer-aided determination of occlusal contact points for dental 3-D CAD. Med Biol Eng Comput 44(5):445–450

    Article  PubMed  Google Scholar 

  33. McNamara BP, Taylor D, Prendergast PJ (1997) Computer prediction of adaptive bone remodelling around noncemented femoral prostheses: the relationship between damage-based and strain-based algorithms. Med Eng Phys 19:454–463

    Article  PubMed  CAS  Google Scholar 

  34. Mellal A, Wiskott HW, Botsis J, Scherrer SS, Belser UC (2004) Stimulating effect of implant loading on surrounding bone. Comparison of three numerical models and validation by in vivo data. Clin Oral Implants Res 15(2):239–248

    Article  PubMed  CAS  Google Scholar 

  35. Noriko T, Tatsuo Y (2008) Correlation between periodontal status and biting force in patients with chronic periodontitis during the maintenance phase of therapy. J Clin Periodontol 35(3):215–220

    Article  Google Scholar 

  36. O’Mahony AM, Williams JL, Katz JO, Spencer P (2000) Anisotropic elastic properties of cancellous bone from a human edentulous mandible. Clin Oral Implants Res 11(5):415–421

    Article  PubMed  Google Scholar 

  37. O’Mahony AM, Williams JL, Spencer P (2001) Anisotropic elasticity of cortical and cancellous bone in the posterior mandible increases peri-implant stress and strain under oblique loading. Clin Oral Implants Res 12(6):648–657

    Article  PubMed  Google Scholar 

  38. Staninec M, Marshall GW, Hilton JF, Pashley DH, Gansky SA, Marshall SJ, Kinney JH (2002) Ultimate tensile strength of dentin: evidence for a damage mechanics approach to dentin failure. J Biomed Mater Res 63(3):342–345

    Article  PubMed  CAS  Google Scholar 

  39. Tamimi F, Torres J, Bassett D, Barralet J, Cabarcos EL (2010) Resorption of monetite granules in alveolar bone defects in human patients. J Biomater 31(10):2762–2769

    Article  CAS  Google Scholar 

  40. Van Oosterwyck H, Duyck J, Vander Sloten J, Van der Perre G, De Cooman M, Lievens S, Puers R, Naert I (1998) The influence of bone mechanical properties and implant fixation upon bone loading around oral implants. Clin Oral Implants Res 9(6):407–418

    Article  PubMed  Google Scholar 

  41. Vollmer D, Bourauel C, Maier K, Jäger A (1999) Determination of the centre of resistance in an upper human canine and idealised tooth model. Eur J Orthodont 21:633–648

    Article  CAS  Google Scholar 

  42. Weinans H, Huiskes R, Grootenboer HJ (1992) Effects of material properties of femoral hip components on bone remodeling. J Orthop Res 10(6):845–853

    Article  PubMed  CAS  Google Scholar 

  43. Weinans H, Huiskes R, Grootenboer HJ (1992) The behavior of adaptive bone remodeling simulation modes. J Biomech 25(12):1425–1441

    Article  PubMed  CAS  Google Scholar 

  44. Wolff J (1986) The law of bone remodeling/translated by Maquet PGJ and Furlong R. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (11072261).

Conflict of interest

None of the authors has any conflict of interest in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haitao Xin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Y., Wang, W., Xin, H. et al. The remodeling of alveolar bone supporting the mandibular first molar with different levels of periodontal attachment. Med Biol Eng Comput 51, 991–997 (2013). https://doi.org/10.1007/s11517-013-1078-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-013-1078-x

Keywords

Navigation